这项工作是由美国能源公司联盟(Alliance for Sustainable Energy,LLC)经营的国家可再生能源实验室为美国能源部(DOE)根据合同编号DE-AC36-08GO28308。这项研究得到了美国能源部的车辆技术办公室的支持,由布莱恩·坎宁安(Brian Cunningham)执导的硅财团项目,由安东尼·伯雷尔(Anthony Burrell)管理。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。
近年来,基于纳米颗粒的药物输送系统已成为有望治疗的有前途的平台,从而提供了增强药物疗效的潜力,同时最大程度地减少了脱靶效应。表面修饰是优化特定治疗应用的纳米颗粒性能的关键方面。单击化学,其模块化,选择性和高效率为特征,已成为纳米颗粒表面工程的多功能工具。本综述提供了有关点击化学的最新进展的全面概述,旨在调整纳米颗粒表面以改善靶向药物的递送。涵盖的关键主题包括使用的点击反应类型,纳米颗粒功能化的策略及其在目标药物输送中的应用。此外,本综述还解决了Click Chemistry介导的纳米颗粒表面修饰中的当前挑战,例如可伸缩性,可重复性和生物相容性,并讨论了在这个迅速发展的领域中研究的潜在研究方向。通过阐明最新的发展并概述了未来的前景,该评论旨在为基于纳米粒子的药物输送系统的持续发展促进临床翻译和治疗创新。
非常需要设计纳米颗粒表面形状的局部变化。这是因为这些修饰阳离子可以改善生物相容性和细胞摄取。23在这里,我们描述了一种在含核碱酶的多聚膜膜外表面形成局部变形的方法。我们表明,在插入包含互补核酶的二嵌段共聚物时,类似触手的节点可以在聚合物的表面形成(图1b)。与蓄水池一样,膜变形和随之而来的淋巴结形成依赖于不同的膜成分之间的互补氢键。将核碱酶配对的可编程性纳入自组装合成聚合物24 - 28先前已被利用以控制纳米颗粒形态,29 - 35瓶刷组件36和颗粒表面化学,37,以及37层的聚合,38,39货物货物40 - 42-42-42-42-42-42-42和增强的水。43
分子治疗的进步使得通过全身或局部给药进行基因编辑成为合理治疗遗传疾病的可行策略。将治疗剂封装在纳米颗粒中可以改善治疗剂的细胞内输送,前提是纳米颗粒能有效地被靶细胞吸收。在之前的工作中,我们已经建立了原理证明,即携带基因编辑试剂的纳米颗粒可以在胎儿和成年动物体内介导位点特异性基因编辑,从而改善啮齿动物 β-地中海贫血和囊性纤维化模型的功能性疾病。对纳米颗粒表面进行修饰以包括靶向分子(例如抗体)有望改善细胞吸收和特定细胞结合。
工作机理磺化萘或三聚氰胺基高效减水剂在水泥水化过程的早期阶段就吸附到水泥颗粒表面。这些吸附在表面的聚合物链会增加水泥颗粒表面的负电荷,通过静电排斥实现分散。除了前一种过程之外,EPSILONE PC 490 还专门采用多羧酸醚设计,其长侧链可大大改善水泥颗粒的分散性。因此,除了在混合过程开始时发生的静电排斥之外,这些侧链的存在会产生空间位阻,从而大大提高水泥颗粒分离和分散的能力。这一特性使得能够生产出具有更长的可加工性保持时间的混凝土。
胆石症,通常称为胆结石,是在胆囊或胆管中发育的硬颗粒。放射学成像,尤其是超声检查,是诊断胆结石的首选方法[1]。胆汁液,一种碱性水性液,包括各种有机成分,包括胆汁盐,胆固醇,卵磷脂和胆红素。胆汁盐起着至关重要的作用,因为它们由脂溶性和水溶性成分组成,使它们可以粘附在脂肪颗粒表面,并通过乳化来帮助消化脂肪。这些胆汁盐以及胆固醇和卵磷脂形成胶束,促进了脂肪的吸收。但是,胆固醇,卵磷脂和胆汁盐之间的失衡会导致胆汁中过量的胆固醇,形成微晶体,最终结合在一起形成胆结石[2]。
注意事项:1.使用 PA-828 防水水泥或 SFT 水泥涂抹颗粒表面防水板。各种铝和不锈钢防水板均需使用 SFT 水泥。2.所示的木工和金属加工描绘了车间制造和工地组装。这些组件应根据普遍接受的行业惯例、标准和批准进行设计、制造和安装。3.受电解反应影响的不同金属类型应进行物理分离。4.除上述图纸外,还应适用 SIPLAST 规格中详述的要求和建议。5.有关 PARAGUARO 系统的产品、尺寸和安装的信息,请参阅 PARAGUARO 屋顶周边系统安装指南。6.如果需要使用底漆来保持适当的附着力,则所有 PARADIENE 20 SA 防水加固和剥离层应用都需要使用 TA-119 底漆。使用 PA-1125 或
钢渣是炼钢过程的副产品。由于钢渣生成率高,且其中含有大量有毒而有价值的金属,如钒,因此从该产品中回收钒是十分必要的。在本研究中,将炼钢转炉渣(含约1.96wt.% V 2 O 5 )磨碎至平均粒度为85µm,采用乙酸浸出法回收钒。在固定乙酸浓度(1摩尔)和固液重量比(200毫升中1克钢渣)的情况下,研究了时间(0至120分钟范围内)和温度(0至80⁰C范围内)对浸出过程的影响。结果表明,增加时间和降低温度(活化能等于-11.4kJ/mol)可提高钒的浸出效率。在 0 ⁰ C 和 90 分钟时达到最大浸出效率。动力学研究表明,通过固体层的热量扩散是钒在乙酸中溶解的控制步骤。此外,热导率 (ka) 随温度升高而降低 (ka=21877.6/T3),因此热量以较慢的速度从反应区转移到颗粒表面。
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
本综述评估了基于纳米颗粒的药物输送系统的文献,以评估其效率。纳米颗粒显示出可能改善抗癌药递送,降低全身毒性并增强治疗结果的潜力。广泛的研究表明,在临床前和临床试验中有令人鼓舞的结果。但是,需要解决诸如药物加载能力有限,稳定性问题和潜在侧面效果等挑战以增强临床翻译。研究人员正在探索提高药物载荷能力的策略,例如修饰纳米颗粒表面或开发新颖的药物封装技术。通过增加药物负荷,这些系统的治疗效果可以显着增强。稳定性问题也构成了临床翻译的障碍。为了克服稳定问题,研究人员正在研究增强纳米颗粒稳定性的方法,例如使用保护性涂层或优化配方。另外,通过仔细选择用于纳米颗粒合成的生物相容性材料并进行严格的毒性研究,然后在进行临床试验之前,正在努力最大程度地减少潜在副作用。