在以下至少两个方面具有相关经验:- (a) 方法 涉及飞机或类似行业的制造和组装的工艺规划、生产控制、调度的工程活动 (b) 熟悉零部件制造中涉及的各种特殊工艺要求。 (c) 熟悉 CATIA/INVOIA 和 PLM。 (d) 熟悉飞机系统和装备技术。熟悉机载部件和组件的寿命政策、储存和处理程序以及可追溯性程序。 期望: (a) 能够在制造车间、工具工程、质量和设计的跨职能团队中工作,解决设计、生产问题和制造设计中的制造问题。 (b) 熟悉军用飞机结构和系统特点、所用部件类型、它们的制造和工具概念(机加工部件、钣金零件和碳纤维复合材料)。 (c) 具有设计和开发活动经验。
如今,航空业面临着许多挑战。日益激烈的竞争和资源短缺对未来的制造技术和轻量化设计提出了挑战。应对这些情况的一种可能方法是激光增材制造 (LAM) 制造技术。然而,由于工艺新颖,仍存在一些挑战需要应对,例如开发更多材料,尤其是轻质合金,以及新的设计方法。因此,为了充分利用工艺潜力,我们创建了创新的材料开发和轻量化设计方法。材料开发过程基于对温度分布与有效工艺因素的分析计算,以确定 LAM 工艺的可接受操作条件。通过将结构优化工具和仿生结构整合到一个设计过程中,我们实现了一种极轻量化设计的新方法。通过遵循这些设计原则,设计师可以在设计新飞机结构时实现轻量化节省,并将轻量化设计推向新的极限。
本咨询通告 (AC) 总结了目前关于飞机结构和发动机材料腐蚀的识别和处理的数据。腐蚀检查频率、腐蚀识别,尤其是腐蚀处理仍然是运营商的责任。这些检查应按照本咨询通告、制造商的建议或运营商自己的维护计划完成。本咨询通告中的程序是可接受的腐蚀处理方法,但不是唯一可接受的腐蚀处理方法。本咨询通告中的信息适用于制造商尚未发布腐蚀控制信息的飞机。如果机身或发动机制造商已发布建议的腐蚀检查时间表和处理计划,则适用的计划必须优先于本咨询通告的建议。本文件的内容不具有法律效力,也不以任何方式约束公众。本文件仅旨在向公众澄清法律或机构政策下的现有要求。
民用飞机和军用飞机之间的一个主要区别是,许多军用飞机都具有携带和投放武器的能力。从航空业早期飞行员手动投掷简单炸弹开始,工程师们就一直致力于开发能够准确、可靠、安全地向目标投放武器的能力。如今,为了成功打击目标,飞机和武器必须整合在一起,以便充分利用武器的全部能力。无论是前射导弹还是向下弹出的储存器(如油箱),无论是从外部安装的挂架还是从内部舱室投放武器,都会产生一些问题,例如能否实现安全分离以及飞机结构能否承受传递的载荷。考虑到装填和瞄准的要求,武器集成的复杂性会增加。因此,将武器集成到飞机上需要集成组织内具备一套多学科的能力。
摘要:本文旨在指出机身腐蚀的一些特性、外力对飞机蒙皮元素的影响以及它们对结构完整性的影响。腐蚀过程通常与飞机结构元素的疲劳有关,这是由许多因素引起的,例如载荷类型、材料性质、腐蚀环境等。本文的重点不是腐蚀过程,而是飞机机翼设计元素特有的载荷系数及其对关键结构元素腐蚀的影响。机翼腐蚀被认为是环境影响蒙皮和连接部件(铆钉、螺钉和焊接接头)受损表面保护的结果,这种影响是由机翼的静态和动态应力以及整体上各个结构元素的相互作用引起的。材料的疲劳进一步增强了各个结构元素的运行动态性。及早发现腐蚀过程对于飞机的整体安全通常至关重要。本文提出的建议是为了改进工作体系,确保飞机在抗腐蚀损伤方面的安全运行。
疲劳分散因子是载荷谱下飞机结构的寿命可靠性指标,用来描述疲劳分析与试验结果的可靠性。军用飞机结构强度规范(GJB67.6-2008)规定,采用平均载荷谱进行疲劳分析时,分散因子一般取4,对应可靠度水平为99.87%;采用严酷载荷谱进行疲劳分析时,分散因子取2~4,但具体数值尚不明确。本研究参考大量相关数据,假设载荷谱引起的疲劳损伤与结构临界损伤值服从对数正态分布,从概率统计的角度对分散因子进行理论推导,并给出不同可靠性水平下结构寿命的疲劳分散因子,进一步确定典型结构细节的差分疲劳分散因子,为采用严酷载荷谱进行军用飞机结构疲劳设计和全尺寸疲劳试验奠定基础。
[1] MIL STD 1530Dc1,国防部标准实践,飞机结构完整性计划(2016 年 10 月 13 日)。[2] Lindgren,E。“美国空军研究实验室对结构健康监测在风险管理支持中的观点”,PHM Soc Euro Conf,STO-MP-AVT-305(7 月2018)。[3] Worden,K.,Farrar,C. R.,Manson,G.,&Park,G.(2007)。结构健康监测的基本公理。英国皇家学会会刊 A:数学、物理和工程科学,463(2082),1639-1664。[4] Aldrin, J. C.、Annis, C.、Sabbagh, H. A. 和 Lindgren, E. A.,“评估无损评估 (NDE) 和结构健康监测 (SHM) 技术损伤表征能力的最佳实践”,第 42 届 QNDE 进展年度回顾,包括第 6 届欧洲-美国 NDE 可靠性研讨会,第 1706 卷,第 200002 页,AIP 出版社,(2016 年)。
飞机电子系统在雷击放电过程中的性能主要由机身和尾翼材料的参数决定[1]。近年来,由复合材料(碳纤维和玻璃纤维)制成的飞机机身设计得到了广泛的发展[2]。复合材料在无人机制造中应用最为广泛。用复合材料制造飞机机身需要开发新的方向,以确保电磁影响和相互作用期间的电磁兼容性 [3, 4]。机载设备在外部电磁影响下的抗噪声能力决定了整架飞机运行的质量和可靠性。最危险的外部电磁影响类型之一是雷电放电的影响。雷电对飞机的影响可分为两个部分:间接雷电放电(其特征是飞机附近云层之间的放电)和直接放电到飞机机身中[4, 5]。由于复合材料在飞机结构中的使用,确保机载设备的抗噪性和飞机的抗雷击能力的任务呈现出新的形态。
关键的飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用疲劳寿命评估和裂纹扩展预测来监测其关键部件的结构完整性。使用了各种方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。选择水平稳定器凸耳是因为它具有最高的疲劳失效可能性。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 Nastran 来模拟裂纹扩展。使用数值结果验证了裂纹扩展分析的结果。结论是,基于疲劳寿命循环,结构状态不会受到严重损伤,其失效大约在100万次循环左右,而耳片底部裂纹扩展位置是关键位置。研究成果将以延长耳片的结构寿命为目标。
摘要:本文介绍了一种根据记录的飞行传感器数据估计大气扰动引起的全局结构载荷的方法。所提出的方法基于用扰动动力学增强动态、灵活的飞机模型。推导出此增强模型的状态观测器,即卡尔曼-布西滤波器。传感器数据通过观测器处理,从而能够估计飞机遇到的大气扰动。随后,这些估计的扰动用于估计全局飞机载荷。为了评估载荷估计结果,应用了等效损伤载荷的概念。它将全局载荷与其对飞机结构疲劳的影响联系起来。为了验证所提出的工具链,模拟了认证中的设计场景,即离散阵风和连续湍流遭遇,以模拟真实的操作数据。收集的数据用于将得到的估计负载与模拟负载进行比较,并比较等效损坏负载。