航空旅行已成为人们生活中必不可少的一部分。不仅是为了方便起见,而且是因为它是前往遥远国家的最快方式,有时涵盖了其他运输方式可能需要几天甚至几个月的距离。因此,航空业的竞争加剧和降低的飞行成本使航空旅行更加负担得起,从而使其能够吸引更多的受众。到2023年,全球航空业为大约45亿乘客提供了服务。根据2021年的数据,任何给定时间的空气中估计的平面数为15,500至17,500。随着航空业的发展,全球飞行数量增加了,因此进行更好的飞机跟踪和安全性的必要性变得更加至关重要。确保乘客安全的需求推动了新技术进步的发展。这是ADS-B(自动依赖性监视广播)技术发挥作用的地方,可以增强飞机跟踪并提高空中交通管理的效率。ADS-B技术通过在飞机的速度,高度和位置提供实时数据来提供帮助,从而可以更准确,更安全地跟踪飞机。尽管有好处,但实现全球ADS-B覆盖范围仍然是一个重大挑战。传统的部署方法通常受到高成本和后勤障碍的阻碍,尤其是在稀缺地面站的农村和服务不足的地区。然而,巨大的尚未开发的潜力在于将这一基础设施分散,并激励个人有助于扩大ADS-B覆盖范围。目前,营利性公司主导了ADS-B地面站基础设施,导致可扩展性缓慢和诸如土地租金和维护之类的高昂经常性成本。此覆盖范围不仅会影响航空安全性,而且还限制了利用ADS-B数据来用于更广泛用例(包括物流,研究和情报收集)的能力。derad网络在这一点上步骤,并授权个人使用便宜且易于安装的设备建立和操作ADS-B地面站。参与者被DRD令牌激励,创建了一个互惠互利的系统,其中贡献者在增强全球航空安全的同时获得奖励。通过分散ADS-B基础架构,DERAD网络克服了传统系统效率低下,实现了更快的可扩展性和较低的成本。该模型提高了航空安全性,并为ADS-B数据的创新应用创造了机会。例如,研究人员,记者和物流公司可以访问分散的市场以获取实时飞行数据,从而在跟踪和分析中解锁了新的可能性。derad网络将复杂的集中系统转换为可访问,可扩展的解决方案,为全球空中交通管理设置新标准
摘要 轨迹优化是航空运输和空中交通管理的一个主要研究课题,因为它对乘客、航空公司和整个环境都有深远的影响,从而对航空运输的感知价值和成本也有深远的影响。虽然人们很好地理解了优化飞行途中部分的挑战,但对最后一部分,即进近和着陆的关注相对较少。在这里,我们展示了如何使用开放的大规模飞机轨迹数据集来表征飞机降落在机场的效率,通过在 10,000 英尺以下飞行的时间和距离来测量。产生的图像高度异质,在低空停留的时间从苏黎世的平均 10 分钟到伦敦希思罗机场的 16 分钟不等。抵达同一机场的航班也会经历截然不同的时间,例如伦敦希思罗机场的到达时间从 12 分钟到 20 分钟不等,具体取决于交通量、一年中的时间和一天中的时间,以及与其他交通模式和机场的互动等因素。从更一般的角度来看,本文说明了如何利用大型数据集的可用性来提高我们对系统实际行为的理解,尤其是其与计划的偏差。
摘要 轨迹优化是航空运输和空中交通管理的一个主要研究课题,因为它对乘客、航空公司和整个环境都有深远的影响,从而对航空运输的感知价值和成本也有深远的影响。虽然人们很好地理解了优化飞行途中部分的挑战,但对最后一部分,即进近和着陆的关注相对较少。在这里,我们展示了如何使用开放的大规模飞机轨迹数据集来表征飞机降落在机场的效率,通过在 10,000 英尺以下飞行的时间和距离来测量。产生的图像高度异质,在低空停留的时间从苏黎世的平均 10 分钟到伦敦希思罗机场的 16 分钟不等。抵达同一机场的航班也会经历截然不同的时间,例如伦敦希思罗机场的到达时间从 12 分钟到 20 分钟不等,具体取决于交通量、一年中的时间和一天中的时间,以及与其他交通模式和机场的互动等因素。从更一般的角度来看,本文说明了如何利用大型数据集的可用性来提高我们对系统实际行为的理解,尤其是其与计划的偏差。
本论文 - 开放获取由 Scholarly Commons 免费提供给您。它已被 Scholarly Commons 的授权管理员接受纳入学位论文和论文中。有关更多信息,请联系 commons@erau.edu 。
摘要 — 航空公司安全部门分析机上记录的飞机数据 (FDM) 以检查安全事件。此活动依靠人类专家创建一个基于规则的系统,该系统根据一小组参数是否超过一些预定义的阈值来检测已知的安全问题。但是,罕见事件最难手动检测,因为模式通常无法一目了然。专家一致认为,进近和起飞程序都更容易发生安全事故。在本文中,我们进行了描述性和预测性分析,以检测 LEBL 机场 25R 跑道进近阶段的异常情况。从描述的角度来看,聚类技术有助于在数据中发现模式和相关性,并识别类似观察的聚类。此外,这些聚类可能会将某些点揭示为与其他观察值隔离的罕见事件。可以使用预测分析以及更简洁的深度学习 ANN 和自动编码器来检测这种异常事件。该方法依赖于学习“正常”观察的样子,因为它们通常是大多数情况。之后,如果我们处理异常飞行,由于与训练数据的偏差,模型将返回较高的重建误差。这表明预测方法可以作为安全专家和 FDM 分析师极其有用的取证工具。关键词 — 异常检测、危险识别、安全、聚类、深度学习、LSTM、自动编码器、HDBSCAN
摘要 — 航空公司安全部门分析机上记录的飞机数据 (FDM) 以检查安全事件。此活动依靠人类专家创建一个基于规则的系统,该系统根据一小组参数是否超过一些预定义的阈值来检测已知的安全问题。但是,罕见事件最难手动检测,因为模式通常无法一目了然。专家一致认为,进近和起飞程序都更容易发生安全事故。在本文中,我们进行了描述性和预测性分析,以检测 LEBL 机场 25R 跑道进近阶段的异常情况。从描述的角度来看,聚类技术有助于在数据中发现模式和相关性,并识别类似观察的聚类。此外,这些聚类可能会将某些点揭示为与其他观察值隔离的罕见事件。可以使用预测分析以及更简洁的深度学习 ANN 和自动编码器来检测这种异常事件。该方法依赖于学习“正常”观察的样子,因为它们通常是大多数情况。之后,如果我们处理异常飞行,由于与训练数据的偏差,模型将返回较高的重建误差。这表明预测方法可以作为安全专家和 FDM 分析师极其有用的取证工具。关键词 — 异常检测、危险识别、安全、聚类、深度学习、LSTM、自动编码器、HDBSCAN
无人驾驶飞行器 (UAV) 在民用、军事和研究应用中的普及度正在迅速提高,作为这一上升趋势的一部分,人们付出了巨大的努力将越来越多的传感功能集成到这些飞行器中。这种传感,或者说传感器数据采集,是 UAV 的核心功能之一 — 如果没有传感能力,无人机就无法运行。通过智能地将传感器集成到飞行器中并与其进行适当的接口,人们能够从这些传感器中获取数据流,从而使飞行器能够飞行并执行所需的任务。在过去几年中,随着 UAV 使用的上升趋势,评估和改进飞行器性能和飞行特性的研究也随之增加。所有这些努力都依赖于从大量传感器和设备获取和利用高保真数据的能力。本文将首先概述数据采集系统的开发。然后,它将重点介绍所涉及的设计方面,包括系统架构、传感接口、通用传感器和用户界面。接下来,本文将介绍无人机研究中使用的数据采集系统和飞行控制系统及其规格。最后,将提供航空电子集成示例来展示其在无人机中的应用。
军事决策通常基于信息系统,其中人类参与其中,必须解释来自多个来源的数据。当数据源产生大量数据时,这个过程对人类来说可能非常难以承受。我们研究大数据分析和信息融合技术在多大程度上可用于支持人类处理大量异构数据,并作为 OODA 循环的观察和定位步骤的一部分提高对正在展开的事件的理解。我们的工作重点是融合来自两个非常不同的数据源的数据:来自社交媒体平台 Twitter 的用户生成内容和来自 OpenSky 传感器网络的空中交通管制数据。我们的目标是查找并提供与航空领域相关的事件的详细信息,这些信息同时出现在两个数据源中。挑战在于融合来自飞机通信的准确和明确的数据与 Twitter 中使用的非常广泛和不精确的自然语言。为了弥合这些来源之间的语义鸿沟,我们开发了一种先进的信息融合模型,该模型允许我们使用每个来源作为事件的触发器,同时使用来自另一个来源的信息丰富数据。使用我们几个月来收集的真实数据,我们展示了多个证据表明两个来源相互丰富。这是以自动化方式完成的,但通常会导致更松散和不准确的关系,需要人类进行适当的解释和理解。尽管如此,这种组合增强了理解,因此非常有助于作为决策者评估事件进展并采取相应行动的基础。
前言-1 00 01 11月2017年11月1日2017年11月1日ROR -2 00 01 NOV 2017 49 00 01 NOV 2017 LOE -3 00 01 NOV 2017 50 00 50 00 01 NOV 2017 NOV 2017 NOV 2017 NOV 2017 51 NOV 2017 NOV 2017 NOV 2017年11月1日至2017年11月1日至2017年11月1日2017年11月1日2017年11月8日01 NOV 2017年11月7日2017第1章 - 9 00 01 11月2017年11月54 00 01 11月2017年11月10日01 NOV 2017 55 00 01 NOV 2017 11 00 01 NOV 2017 Chapter 9 - 56 00 01 NOV 2017 Chapter 2 -12 00 01 NOV 2017 57 00 01 NOV 2017 13 00 01 NOV 2017 58 00 01 NOV 2017 Chapter 3 -14 00 01 NOV 2017 Chapter 10 - 59 00 01 NOV 2017 15 00 01 NOV 2017 60 00 01 NOV 2017 16 00 01 NOV 2017 61 00 01 NOV 2017 17 00 01 NOV 2017 Chapter 11 - 62 00 01 NOV 2017 18 00 01 NOV 2017 63 00 01 NOV 2017 19 00 01 NOV 2017 Appendix A - 64 00 01 NOV 2017 20 00 01 NOV 2017 65 00 01 NOV 2017 Chapter 4 - 21 00 01 NOV 2017 66 00 01 NOV 2017 22 00 01 NOV 2017 Appendix B - 67 00 01 NOV 2017 23 00 01 NOV 2017 68 00 01 NOV 2017 24 00 01 NOV 2017 69 00 01 NOV 2017 25 00 01 NOV 2017 70 00 01 NOV 2017 26 00 01 NOV 2017 71 00 01 NOV 2017 27 00 01 NOV 2017 72 00 01 NOV 2017 28 00 01 NOV 2017 73 00 01 NOV 2017 29 00 01 NOV 2017 Appendix C - 74 00 01 NOV 2017 Chapter 5 - 30 00 01 NOV 2017 75 00 01 NOV 2017 31 00 01 NOV 2017 76 00 01 NOV 2017 32 00 01 NOV 2017 77 00 01 NOV 2017 33 00 01 NOV 2017 78 00 01 NOV 2017 34 00 01 NOV 2017 79 00 01 NOV 2017 35 00 01 NOV 2017 80 00 01 NOV 2017 36 00 01 NOV 2017 81 00 01 NOV 2017 37 00 01 NOV 2017 Appendix D - 82 00 01 NOV 2017 38 00 01 NOV 2017 83 00 01 NOV 2017 39 00 01 NOV 2017 84 00 01 NOV 2017 Chapter 6 - 40 00 01 NOV 2017 85 00 01 NOV 2017 41 00 01 NOV 2017 86 00 2017 年 11 月 01 日 42 00 2017 年 11 月 01 日 87 00 2017 年 11 月 01 日 43 00 2017 年 11 月 01 日 附录 E - 88 00 2017 年 11 月 01 日 44 00 2017 年 11 月 01 日 89 00 2017 年 11 月 01 日 45 00 2017 年 11 月 01 日 附录 F - 90 00 2017 年 11 月 01 日 第 7 章 - 46 00 2017 年 11 月 01 日 91 00 2017 年 11 月 01 日 47 00 2017 年 11 月 01 日 附录 G - 92 00 2017 年 11 月 01 日 附录 H - 93 00 2017 年 11 月 01 日
飞行数据分析 (FDA) 计划可帮助运营商识别、量化、评估和解决运营风险。FDA 可有效用于支持一系列适航性和运营安全任务。通过这项合作开发工作,许多有远见的运营商已经展示了 FDA 的安全优势,以至于国际民用航空组织 (ICAO) 认识到事故预防的潜力,引入了飞行数据分析计划的规定,作为运营商事故预防和飞行安全计划的一部分。获准开展国际商业航空运输业务的大型飞机的运营商将负责非惩罚性 FDA 计划的运营,该计划包含足够的保障措施来保护数据来源。运营商可以获得专业承包商的服务来运营该计划。