通过微型繁殖/组织培养生产种子马铃薯:将微观传播技术整合到商业种子生产中已将马铃薯从实验室试管转变为实际的田间培养。用马铃薯块茎的组织培养的初始实验追溯到1951年。从那时起,已经成功地培养了来自各种器官,包括叶子,叶柄,节间段,卵巢,茎,根和芽尖的各种器官的植物组织[6,7]。在生产种土豆中,微型传播的采用有望解决与常规种子生产系统相关的许多问题[8]。这个过程通常涉及分生组织培养以消除病毒。为增强产生无病毒植物的可能性,分生组织培养通常与热疗和/或化学疗法结合使用。尽管有细致的护理,但获得了大量无病毒的梅美龙通常具有挑战性。因此,在大规模微型繁殖程序中用作源工厂的每个梅美隆都必须进行病毒测试
马铃薯叶疾病主要有两类;早期疫病和晚疫病疾病。这种疾病在某些天气模式中可能更普遍,并且对马铃薯作物产生灾难性影响。总结,温暖,潮湿的天气,经常降雨或大量露水,15°C至20°C之间的温度以及缺乏阳光的天气条件是可能导致马铃薯晚枯萎病的天气条件。较干燥的天气条件有利于早期疫病,与后期的疫病不同。温暖而干燥的天气,缺乏降雨或灌溉,21°C至29°C之间的温度以及早晨的高湿度是可能导致马铃薯早期枯萎病的天气状况。修改的数据集用于受气候影响的预测,使用随机森林模型的测试精度为97%。对实验结果的分析表明,基于天气数据框架的建议的马铃薯叶疾病预测优于框架的结果。
该供应链中最大的FLW体积发生在处理设施。在这项研究中,这代表了进入设施的原始体积的21-38%,这一范围来自不同的测量方法。flw是由于产品不符合规格(例如,黑点),丢弃的果皮,批次失败的质量控制检查,严格的食品安全措施以及运营和设备效率低下。最大的废物类别是“湿”,它是通过烹饪土豆的过程阶段产生的。“冷冻”废物是指冷冻后丢弃的产品,包括包装物品。该设施中近95%的废物作为牛饲料出售。
$ evwudfw 7kh remhfwlyh ri wklv uhvufk lv wr lqhvwljdwh wkh wkh hiihfwv ri lqfrusrudwlqj srwdwr vnlq iorxu dv D vxvwlwxwh iru wslrfd iorxu iorxu rq wkh privxuh pripwxuh frqwhqw surwhlq surwhlq frqwhqw frqwhqw idw idw idw frqwk frqwk dvk frqwk frqwk frqwh dvk frqWho frqwhqw dqg fuxghu frqwhqw ri eurlohu fklfnhq phdwedoov 7kh phwkrg hpsor \ hg lq lq wklv uhvufk uhvufk uhvufk zdv d&rpsohwho \ 5dqgrpl] lqfrusrudwlqj srwdwr vnlq iorxu dv d vxvwlwxwh iru ldslrfd iorxu dw gliihuhuhuhqw srrsruwlrrrqv 3 srwdwr vnlq iorxu 3 srwdww vnlq iorxu 3 srwdwr vnlq iorxu 3 srwdwr vnlq iorrq iorxu 3 3 srwdwr vnlq iorxu 3 srwdwr vnlq iorxu dqg 3 srwdwr vnlq iorxu 7klv uhvhdufk zdv uhsolfdwhg irxu wlphv \ lhoglqj d wrwdo ri h [shulphqwdo xqlwv hqvxuh hqvxuh urexvwqhvv dqg dqg uholdelolw \ ri wkh ilqlqlqlqjv 7kh iilqlqlqlqlqlqlqlqlqjv ri ghprqvwudwh wkdw wkh lqfoxvlrq ri srwdwr vnlq iorxu dv d vxvwwlwxwh iru wslfd iorxu iorxu kdv d vljqlilfdqw hiihfw hiihfw hiihfw hiihfw 3 rq wkh frq frq frq frq frq suwhqw suwhqw suwhqw suwhqw suwhqw suwhqw suwhqw suwhqw suwhqw suwhqw su Whllq frqwhqw idw frqwhqw dvk frqwhoqw fduerk \ gudwh frqwhqw dqg dqg fuxh fuxh ilehu frqwhqw ri eurlohu fklfnhq phdwedwedoov 7kh ehvw ehvw wuhdwphqw wuhdwphqw wuhdwphqw lq lq lq lq lq lq lq lq lq lq lq lq ZDV 3 Zlwk d prlvwxuh frqwhqw ri surwhq frqwhqw ri idw frqwhw ri dvk frqwhqw ri fduerk \ gudwh frqwh frqwhqw ri dqg ri dqg ri dqg fuxgh fuxgh fuxgh ilehu frqWhu frqwhqw ri frqww ri div> ri div>
马铃薯是全球数百万的主食,发现自己处于关键时刻。该行业正在挑战复杂的挑战矩阵,从气候变化和环境可持续性到不断发展的市场需求和全球粮食安全问题。这些挑战正在塑造当下并定义马铃薯种植的未来轨迹。这种转变的核心是对可持续性和韧性的越来越重视。农业部门,包括马铃薯行业,越来越多地认识到有必要采用对经济友好,经济上可行且对社会负责的实践。这种转变是由对我们生态系统的相互联系以及农业实践对地球及其居民的影响的更深入的见解所驱动的。应对这些挑战,来自不同部门的利益相关者聚集在一起。这种合作努力的重点是可持续马铃薯品种的研究和开发。这项努力以几种新兴趋势为标志,每个趋势都涉及可持续性和韧性的不同方面。从利用替代基因研究到采用新的农业实践,马铃薯行业正在转变。这确保了可持续性,并为其他农业部门树立了先例。当我们深入研究这些趋势时,很明显,马铃薯种植的未来正在重写。
美国能源部(DOE)化石能源和碳管理(FECM)甲烷缓解技术计划(MMT)正在进行研究以量化和减轻整个天然天然气上游基础设施的甲烷排放。FECM计划推进具有成本效益的技术,以检测,测量,预测和预防甲烷泄漏更有效,并提高整个化石能量价值链中甲烷排放数据的可用性和可靠性。增强对甲烷泄漏率的潜在规模和分布的理解将推动技术开发工作的科学基础,以减少对与天然气和石油运营相关的环境的影响,并有可能抵消常规天然气爆炸等实践。对排放量化和缓解技术的研究还将有助于加速具有成本效益的产品和程序的商业可用性,以减少与DOE策略,管理政策,国会资助拨款以及新兴的监管发展的方式减少甲烷排放。
在这项研究中,我们生成并比较了三个针对马铃薯(卵巢结核)制成的胞苷碱基编辑器(CBE),该量子量其最多赋予了原生质体池中所有等位基因的43%C-T转换。早些时候,基因编辑的马铃薯植物是通过聚乙烯二烯介导的CRISPR/CAS9转化原生质体的转化而成功产生的。在一项研究中,通过用内源性马铃薯ST U6启动子替换U6-1启动子的标准拟南芥,从而获得了3 - 4倍的编辑效率。在这里,我们使用了这种优化的构建体(SP Cas9/ st u6-1 :: grna1,Target GRNA序列GGTC 4 C 5 TTGGAGC 12 AAAAAC 17 TGG)用于生成CBES量身定制的马铃薯,并测试了用于C-T碱基编辑的CBES在Granule-Bounchase-bound starch synthase 1 Gene中的C-T碱基编辑。首先,将链球菌CAS9转化为(D10A)Nickase(NCAS9)。接下来,来自人hapobec3a(A3a),大鼠(EVO_RAPOBEC1)(RA1)或Sea Lamprey(EVO_ PM CDA1)(CDA1)的三种胞质脱氨酶之一(cda1)与NCAS9和A尿素 - DNA Glycosylase融合了C-Encas9(CDA1)与每种模块化的链接。CBE的总体高度有效,A3A具有最佳的总体基础编辑活动,平均为34.5%,34.5%和27%的C-T转换为C4,C5和C12,而CDA1的平均基础编辑活动的平均基础编辑活性为34.5%,34%,34.5%,14.25%C4和C4,C4和C4,C4和C4,C4和C4,C4。ra1在C4和C5时表现出平均基础编辑活性为18.75%,19%的基础编辑活动,是唯一在C12时显示C-TO-T转换的基本编辑器。
摘要。本文的重点是对马铃薯农业生物症中科罗拉多州马铃薯甲虫种群的全面研究。研究深入研究了甲虫种群的形成和生物生物特征的复杂过程。该文章还深入研究了一个被称为Beauveria bassiana VTQ-28的特定菌株,该菌株是从科罗拉多州马铃薯甲虫中分离出来的。该菌株在实验室环境和现场进行了测试,针对科罗拉多州马铃薯甲虫的各个发育阶段。目的是评估Bassiana VTQ-28作为对甲虫的生物防治剂的有效性。此外,该研究还评估了苏云金芽孢杆菌对科罗拉多州马铃薯甲虫的局部采购菌株的杀虫活性。此分析提供了苏云金芽孢杆菌菌株作为生物控制的另一种途径的潜力的见解。通过彻底检查人口动态,生物生物学特征以及特定微生物控制科罗拉多州马铃薯甲虫的潜力,这项研究有助于理解马铃薯农业生物症中的有害生物管理策略。这些发现对可持续农业实践和这种具有经济意义的害虫的有效控制具有影响。关键字。Beauveria Bassiana,B。苏云金,生物防治,微生物,科罗拉多州马铃薯甲虫。
基因组工程正在重塑植物生物技术和农业。使用最近开发的基因编辑技术进行作物改良现在比以往任何时候都更容易、更快速、更精确。尽管马铃薯被认为是一种全球粮食安全作物,但它并没有从这些技术的多样化中获益足够多。栽培马铃薯的独特遗传特征,如四体遗传、高基因组杂合性和近交衰退,阻碍了这种重要作物的常规育种。因此,基因组编辑为马铃薯的性状改良提供了一套极好的工具。此外,使用特定的转化方案,可以设计出无转基因的商业品种。在这篇评论中,我们首先描述了马铃薯基因组编辑过去的成就,并强调了这些努力中缺失的一些方面。然后,我们讨论了马铃薯基因组编辑的技术挑战,并提出了克服这些困难的方法。最后,我们讨论了尚未在马铃薯中探索的基因组编辑应用,并指出了文献中缺失的一些途径。
实验准备 1.1 实验区域必须标记清楚,例如。用棍子分别划定界限。许可区域和转基因试验区域。最迟在种植土豆时,必须通过电子邮件将此图画或照片发送至丹麦农业局:planter&biosikkerhed@lbst.dk。此标记将一直保留,直到许可区域的自我控制停止为止,参见自我检查和日志,条款 1.10-1.11。标记的原因在于,为了便于监管,在转基因马铃薯种植过程中以及随后的监测期间,必须能够辨别两个区域(许可区域和转基因试验区域)。 1.2 申请人在申请书中申明,距离最近的马铃薯田至少有15米。不过,丹麦农业局要求申请人种植种薯时保持至少20米的安全距离(见定义)。生产种植马铃薯的安全距离必须至少为10米。这些安全距离符合关于种植转基因作物等的行政命令(2022 年 5 月 30 日 Bek. 第 745 号)中的安全距离,并根据奥胡斯大学专家的建议确定,参见。 2015 年的命令:“更新知识和