1胃肠道部门,医学与外科和牙科部门的“ Scuola Medica Salernitana”,位于意大利巴罗尼西的萨勒诺大学; 2意大利那不勒斯坎帕尼亚·瓦维特利(Campania Luigi Vanvitelli)心脏病学科学系转化科学系; 3意大利的意大利家庭医学学会,意大利的意大利家庭医学学会合作社Simg Come Griencal医生; 4个初级保健医生,ASL 9意大利Grosseto; 5 Vanvitelli心脏病学部门,意大利那不勒斯Monaldi医院;
褐皮土豆常用于烘烤、制作土豆泥和炸薯条。它们经常被家庭和加工商购买。由于其尺寸,褐皮土豆非常适合制作炸薯条,因为它们有可能被加工成又长又粗的薯条(Potatoes USA 2021a)。黄土豆用途广泛,越来越受欢迎。它们经常被家庭购买,红土豆也是如此。此外,与传家宝番茄一样,传家宝土豆品种似乎也有市场,尤其是紫色品种。用于制作薯片的品种是圆形白色品种,其中许多是薯片加工商或品牌的专有品种。其他土豆品种不太受欢迎,但它们是消费者可以选择的众多品种的代表。尽管美国有各种各样的选择,但南美洲种植的土豆品种超过 5,000 种(Madigan 2021),这为进一步扩大美国生产的品种创造了潜力。
马铃薯是全球产量最大的非谷类粮食作物,产量高、营养价值高,是谷类作物的重要替代作物,在粮食安全中发挥着重要作用。CRISPR/Cas(成簇的规律间隔的短回文重复序列/CRISPR-associated)系统具有操作简便、效率高、成本低等优点,在马铃薯育种中显示出巨大的应用潜力。本文对CRISPR/Cas系统的作用机制、衍生类型以及CRISPR/Cas系统在改良马铃薯品质、抗性、克服马铃薯自交不亲和性等方面的应用进行了详细综述,同时对CRISPR/Cas系统在未来马铃薯产业发展中的应用进行了分析和展望。
二倍体马铃薯研究正在蓬勃发展。现在的挑战是将这些研究成果转化为实用的育种计划,培育出农民愿意使用、对最终用户有益的品种。杂交育种是植物改良的首选技术,因为它能给农民和商业利益相关者带来共同利益。杂交育种为农民提供了一种在多个性状上表现优异的统一作物,同时以知识产权保护的激励措施和实现长期遗传收益的高效系统吸引了商业育种者 [1]。最近,Bradshaw 介绍了理论背景,重点介绍了驱动杂交马铃薯育种计划决策的数量遗传学问题 [2]。在这里,我们根据商业育种公司 Solynta 的经验,讨论了杂交育种计划的组成部分。杂交育种计划通常分为几个较小的部分,具有特定的性状目标。这通常表现为分为 (1) 亲本系开发和 (2) 杂交评估计划。前者主要目的是积累有利于复杂性状的等位基因、通过回交程序叠加抗性以及选择高度可遗传的消费者/市场性状,而后者主要侧重于确定最佳亲本组合,以及评估产量稳定性和评估特定区域的适应性。因此,将育种目标分散到多个阶段和周期增加了选择数量性状改良的难度,但代价是杂交育种计划设计中的系统复杂性更高 [ 3 ]。在本章中,我们描述了成功的商业杂交育种计划所需的不同组成部分(图 1 )。它们遵循从应用研究到商业产品开发的轨迹。高品质自交系是基础。
摘要 马铃薯 ( Solanum tuberosum L.) 在确保全球粮食和营养安全方面发挥着重要作用。生物和非生物胁迫都会对块茎产量产生负面影响,而酶促褐变和冷诱导甜化则会严重导致收获后品质损失。面对人口增长和气候变化的双重挑战,马铃薯改良对其可持续生产至关重要。然而,由于马铃薯具有多种特性,包括高杂合性、四体遗传、近交衰退和二倍体马铃薯的自交不亲和性,常规育种方法不足以在相对较短的时间内实现四倍体马铃薯品种的显著性状改良。CRISPR/Cas 介导的基因组编辑为开发具有高商业化潜力的新型马铃薯品种开辟了新的可能性。在这篇综述中,我们总结了优化基于 CRISPR/Cas 的马铃薯基因组编辑方法的最新进展,重点介绍了解决该物种具有挑战性的生物学问题的方法。我们还讨论了获得无转基因基因组编辑马铃薯品种的可行性,并探索了提高马铃薯抗逆性、营养价值、淀粉组成以及储存和加工特性的不同策略。总之,本综述深入了解了使用 CRISPR/Cas 技术进行马铃薯基因组编辑的最新进展、可能的瓶颈以及未来的研究方向。
摘要:马铃薯是一种重要的非谷类主食作物,是世界大量人口的食物来源。全基因组关联研究(GWAS)分析已成为一种有用的工具,通过揭示与感兴趣性状的显著关联来揭示重要植物性状的遗传基础。本研究旨在探索表型多样性并确定与重要花部性状相关的遗传基础。总共使用 237 个四倍体马铃薯基因型作为植物材料,并根据增强区组设计连续两年(2016 年、2017 年)进行田间试验。所研究的花部性状的方差分析反映了非常显著的基因型效应。两年的平均数据显示雌蕊长度(5.53 至 9.92 mm)、雄蕊长度(6.04 至 9.26 mm)和雄蕊上方雌蕊长度(1.31 至 4.47 mm)存在显著差异。 Pearson 相关性分析表明雌蕊长度与雄蕊长度 (r = 0.42) 以及雌蕊高于雄蕊的长度 (r = 0.28) 之间存在高度显著的正相关性。进行了主成分分析,认为前两个主成分共占 81.2% 的变异。星座图根据雄蕊和雌蕊长度将所研究的马铃薯组分为两个主要种群。总共使用了 12,720 个 SNP 标记进行标记-性状关联,发现两年内共有 15 个标记与所研究的性状显著相关。在两年内识别相同的标记有助于验证获得的标记-性状关联。所识别的显著标记反映了一些可能对马铃薯育种计划有益的假定候选基因。据我们所知,这是第一项确定重要花卉性状遗传基础的研究,可能对对这些性状的马铃薯标记辅助育种感兴趣的科学界有所帮助。
创新描述:用于检测早疫病和晚疫病的马铃薯 AI 模型已添加到 PlantVillage Nuru 应用程序中,现在可用于 Android 和 iOS 操作系统。这项创新旨在帮助农民在田间诊断作物病害,无需互联网连接。
谷物、块茎、块根、豆类和其他作物产品中的丙烯酰胺已经成为食品行业的一个难题。本文回顾了丙烯酰胺是如何主要由游离天冬酰胺和还原糖形成的,前体浓度与丙烯酰胺形成之间的关系,以及遵守日益严格的法规的挑战。本文评估了在降低食品中丙烯酰胺含量方面取得的进展,以及处理可能因植物对营养、疾病和冷藏的反应而高度可变的原材料的难度。在涵盖丙烯酰胺、作物生物技术和作物保护的监管背景下,本文评估了植物育种和生物技术提供低丙烯酰胺品种的潜力。
翻译起始因子,特别是 eIF4E 家族,是许多植物物种对马铃薯 Y 病毒组隐性抗性的主要来源。然而,在马铃薯 (Solanum tuberosum L.) 种质中尚未鉴定出 eIF4E 介导的对该病毒属的抗性。与番茄一样,马铃薯 eIF4E 基因家族由 eIF4E1、其旁系同源物 eIF4E2、eIF(iso)4E 和 nCBP 组成。在番茄中,eIF4E1 敲除 (KO) 可对一组马铃薯 Y 病毒组产生抗性,而 eIF4E1/2 双 KO 虽然可产生更广泛的抗性,但会导致植物发育缺陷。这里,四倍体马铃薯 cv。 Desirée 拥有显性 Ny 基因,该基因可抗马铃薯 Y 病毒 (PVY) 菌株 O 但不抗 NTN,用于评估通过 CRISPR-Cas9 介导的 eIF4E1 易感基因 KO 来扩大其 PVY 抗性谱的可能性。经过植物原生质体转染再生的双重过程,获得了 eIF4E1 KO 马铃薯。敲除是针对 eIF4E1 的,在其 eIF4E2 旁系同源物中未发现突变。eIF4E 家族的表达分析表明,eIF4E1 的破坏不会改变其他家族成员的 RNA 稳态水平。用 PVY NTN 分离物攻击的 eIF4E1 KO 系显示病毒积累减少和病毒诱导症状改善,表明 eIF4E1 基因是其增殖所必需的但不是必需的。我们的数据表明,可以通过增强 eIF4E 介导的隐性抗性,有效利用 eIF4E1 编辑来拓宽优良马铃薯品种(如 Desirée)的 PVY 抗性谱。
马铃薯 ( Solanum tuberosum L.) (2 n = 4 x = 48) 是人类消费量继大米和小麦之后的第三大重要粮食作物。马铃薯被视为欧洲和美洲部分地区的主食。2018 年,世界马铃薯总产量为 3.6817 亿吨,其中中国(9026 万吨)位居第一,印度(4853 万吨)紧随其后(FAOSTAT,2018 年)。世界人口将从现在的 77 亿增加到预计 2050 年的 97 亿,对粮食供应构成了巨大挑战(联合国,2019 年)。马铃薯易受到各种病原体、害虫和环境非生物胁迫的侵害。在气候变化情景下,情况正在恶化。在印度,主要马铃薯种植邦的平均马铃薯产量(占全国马铃薯产量的 90%)可能会在 2050 年代下降 2.0%,在 2080 年代下降 6.4%(Rana 等人,2020 年)。为了解决这些问题,常规育种在品种开发计划中发挥了关键作用,同时结合标记辅助选择,主要针对晚疫病、病毒和马铃薯胞囊线虫 - 世界各地的抗性品种,例如印度的 Kufri Karan(ICAR-CPRI 年度报告,2018-19 年)。后来,马铃薯转基因技术也得到了开发,以抵抗疾病(如晚疫病和病毒)、非生物胁迫(如高温和干旱)、害虫(如马铃薯胞囊线虫和马铃薯块茎蛾)、加工品质(如降低冷诱导甜度),但它们均未在田间应用。因此,随着测序技术的进步和马铃薯基因组序列的可用性(马铃薯基因组测序联盟,2011),有可能应用基因组学工具(如基因组编辑)来调节目标基因。基因组编辑是一种先进的基因组学工具,可通过基因敲除和插入/缺失诱变来改良作物(Hameed 等人,2018)。它允许在基因组中的特定位点发生双链断裂(DSB),并通过自然发生的 DNA 修复机制进行修复,即非同源末端连接 (NHEJ) 或同源重组 (HR)。过去,该系统早期由蛋白质引导的核酸酶促进,例如锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN)。但现在,人们的注意力转向了一种新的 RNA 引导核酸酶,称为成簇的规律间隔的短回文重复序列 (CRISPR) — CRISPR 相关 (Cas) (Nadakuduti 等人,2018)。与组装 CRISPR/Cas 相比,TALEN 和 ZFN 需要特殊的专业知识、更长的时间和更高的成本。事实上,据报道,CRISPR/Cas 在作物中的应用取得了巨大进展。在马铃薯中,CRISPR/Cas 已被证明可以改善块茎品质、抗病性(晚疫病和马铃薯 Y 病毒)、表型和其他性状(Dangol 等人,2019 年;Hameed 等人,2020 年;Hofvander 等人,2021 年)。本文介绍了 CRISPR/Cas 的现状、未来前景以及马铃薯面临的挑战。