321.515操作。1。如果车辆符合以下所有条件,则可以在该州的公共高速公路上运行该州的公共高速公路,而不会在车辆中进行物理上存在。如果发生自动驾驶系统的故障,车辆能够达到最小的风险条件,这使系统无法在系统的预期操作设计域内执行整个动态驾驶任务(如果有)。b。在无人驾驶操作中,该车辆能够遵守该州的适用交通和机动车安全法律和法规,该法规管理动态驾驶任务的执行,除非该部门已授予车辆豁免。c。该车辆已获得车辆制造商的认证,以符合所有适用的联邦汽车安全标准,除非在适用的联邦法律或国家公路交通安全管理局根据适用的联邦法律授予该车辆的豁免。2。在自动化驾驶系统在该州的公共高速公路上执行整个动态驾驶任务的操作,而车辆中存在常规的人驾驶员,应合法。在此类操作期间,常规人驾驶员应根据第321.174条拥有有效的驾驶执照,并应遵守第321.20B条规定的财务责任范围要求和罚款。b。3。常规人类驾驶员应根据制造商的要求和规格操作配备系统的车辆,并在自动驾驶系统提示时重新对车辆进行手动控制。在订婚的同时,应设计自动驾驶系统,以符合该州的适用交通和机动车安全法律和法规,该法规管理动态驾驶任务的绩效,除非该部门已授予车辆豁免。除非本节规定,不得解释为要求传统的人类驾驶员操作由自动驾驶系统操作的无人驾驶的车辆。 自动化驾驶系统虽然参与,但应视为履行传统人类驾驶员所需的任何身体行为,以执行动态驾驶任务。不得解释为要求传统的人类驾驶员操作由自动驾驶系统操作的无人驾驶的车辆。自动化驾驶系统虽然参与,但应视为履行传统人类驾驶员所需的任何身体行为,以执行动态驾驶任务。
公司名称Mizuho Research&Technologies,Ltd。位置Chiyoda-ku,东京成立于2021年4月1日,资本16.275亿日元代表总裁兼首席执行官(代表董事)Masatoshi Yoshihara商业描述信息处理服务,智囊团咨询服务
1引言自动驾驶通过消除人为错误[1]来减少道路死亡[1],通过改善交通流量[60]并为数百万受残疾人影响的人提供流动性来改变社会的潜力[1]。虽然自动驾驶汽车的部署有限(AVS)是无限的[14],但仍存在挑战,例如在较差的天气条件和建筑区域中运营[22]。为了应对这些挑战,为提高机器学习的准确性(ML)模型而采取了重大努力[16,52,61,76,88]。但是,更准确的模型通常更加算法[73,90]。因为AV必须以比人类的反应时间快(例如390毫秒至1。2 s [45,87]),在车辆上部署模型需要仔细的运行时和准确性之间的权衡导航,以确保AVS提供高质量的决策和快速响应时间[34,79]。进一步满足严格的绩效要求的挑战,由于体力,热量和稳定性限制以及由于经济现实而导致的车载计算AV可以访问今天受到限制(第3节);综上所述,结果是在最新的(SOTA)AV硬件上可用的量命令较少,可用于云,该硬件可以实时运行哪些模型。访问更好的计算将为更快地运行更高精度的更大型号提供机会,直接转化为提高安全性。我们建议转向云,该云提供对SOTA硬件的按需访问,因此提供了机会
摘要:使自动驾驶汽车能够在轮胎部队饱和的情况下可靠地在Handling的范围内可靠运行,这将提高其安全性,尤其是在诸如紧急障碍避免或不利天气状况之类的情况下。然而,由于任务的动态性和对道路,车辆及其动态相互作用的不确定特性的高灵敏度,解锁此能力是具有挑战性的。是出于这些挑战的动机,我们提出了一个框架,以使用包含来自不同环境中不同车辆的轨迹的未标记数据集学习有条件的扩散模型,以进行高性能车辆控制。我们设计了扩散模型,以通过物理知识数据驱动的动力学模型的参数的多模式分布来捕获复杂数据集的轨迹分布。通过调节在线测量中的生成过程,我们将扩散模型集成到一个实时模型预测控制框架中,以限制驾驶,并证明它可以在频率上适应给定的车辆和环境。在Toyota Supra和Lexus LC 500上进行的广泛实验表明,单个扩散模型在不同的轮胎在不同的道路条件下使用不同的轮胎时,可以在两辆车上进行可靠的自动漂移。该模型与任务特定的专家模型的性能相匹配,同时以概括性的概括为单位,铺平了迈向一般,可靠的方法,以在处理范围内进行自动驾驶。
摘要 - 评估和培训自主驾驶系统需要多样化且可扩展的角案例。但是,大多数现有场景生成方法都缺乏可控性,准确性和多功能性,从而导致产生不令人满意的结果。受图像生成中Draggan的启发,我们提出了DragTraffic,这是基于条件扩散的广义,交互式和可控制的交通场景生成框架。dragtraffic使非专家可以通过自适应混合物专家体系结构为不同类型的交通代理生成各种逼真的驾驶场景。我们采用回归模型来基于条件扩散模型提供一般的初始解决方案和改进程序,以确保多样性。通过交叉注意来引入用户注定的上下文,以确保高可控性。在现实世界中的数据集上进行的实验表明,拖拉法在真实性,多样性和自由方面优于现有方法。演示视频和代码可在https://chantss.github.io/dragtraffic/上找到。
我们通过增强世界的增强表示,开发了一个分层的LLM任务计划和重建框架,以有效地将抽象的人类统一到有形的自主水下汽车(AUV)控制中。我们还挑战了一个整体的重建器,以向所有计划者提供现实世界中的反馈,以进行健壮的AUV操作。尽管已经进行了大量研究来弥合LLMS和机器人任务之间的差距,但他们无法保证在广阔而未知的海洋环境中AUV应用的成功。为了应对海洋机器人技术中的特定挑战,我们设计了一个层次结构计划来制定可执行的运动计划,该计划通过将长途任务分解为子任务,从而实现了计划效率和解决方案质量。同时,Replanner获得实时数据流以解决计划执行过程中的环境不确定。实验验证了我们所提出的框架是否通过自然语言试验为长期持续任务提供了成功的AUV表现。项目Web-网站https://sites.google.com/view/oceanplan。
摘要 - 鸟眼视图中的3D对象检测(BEV)空间最近已成为自主驾驶领域的一种普遍方法。与透视图方法相比,尽管准确性和速度估计的改善有所提高,但现实世界自动驾驶汽车中基于BEV的技术的部署仍然具有挑战性。这主要是由于它们依赖基于视觉转化器(VIT)的架构,该体系结构引入了相对于输入分辨率的二次复杂性。为了解决这个问题,我们提出了一个有效的基于BEV的3D检测框架,称为Bevenet,该框架利用了仅卷积的架构建筑设计来规避VIT模型的局限性,同时保持基于BEV的方法的有效性。我们的例子表明,在Nuscenes挑战中,Bevenet比现代的最新方法(SOTA)快速(SOTA)方法,达到0.456的平均平均精度(MAP)为0.456,NUSCENES检测分数(NDS)的平均精度(MAP)为0.555在Nuscenes验证验证数据上,均为0.555,并使用persenter firames perference Speets perspersy Specters perspersy perspersy perspersy prement perspersy prement per per per 47。据我们所知,这项研究是第一个实现基于BEV的方法的重大效率提高的研究,强调了它们对现实世界自动驾驶应用程序的可行性的增强。
运动脑机接口 (BMI) 解码神经信号,帮助瘫痪患者移动和交流。尽管在过去二十年中取得了重大进展,但 BMI 仍面临着临床可行性的关键障碍。侵入式 BMI 可以实现熟练的光标和机械臂控制,但需要神经外科手术,对患者构成重大风险。非侵入式 BMI 没有神经外科手术风险,但性能较低,有时使用起来非常令人沮丧,阻碍了广泛采用。我们通过构建高性能的非侵入式 BMI 朝着打破这种性能风险权衡迈出了一步。17 限制非侵入式 BMI 解码器性能的关键限制是其较差的神经信噪比。为了克服这个问题,我们贡献了 (1) 一种新颖的 EEG 解码方法和 (2) 人工智能 (AI) 副驾驶,可以推断任务目标并帮助完成行动。我们证明,借助这种“AI-BMI”,结合使用卷积神经网络 (CNN) 和类似 ReFIT 的卡尔曼滤波器 (KF) 的新型自适应解码方法,健康用户和瘫痪参与者可以自主且熟练地控制计算机光标和机械臂。使用 AI 副驾驶可将目标获取速度提高 4 倍。在标准的中心向外光标控制任务中,目标获取速度提高了 3 倍,并使用户能够控制机械臂执行顺序拾取和放置任务,将 4 个随机放置的块移动到 4 个随机选择的位置。随着 AI 副驾驶的改进,这种方法可能会产生临床上可行的非侵入式 AI-BMI。26
4,5 DHOLE PATIL工程学院信息技术系摘要:自动驾驶系统(ADS)有望彻底改变运输的未来,有望提高安全性,效率和便利性。深度强化学习(DRL)已成为解决动态环境中复杂决策任务的强大方法,使其成为开发智能自动驾驶汽车的有前途的候选人。本文探讨了DRL技术在自主驾驶中的应用,重点是感知,计划和控制的整合。我们回顾了最新的DRL算法,包括深Q-networks(DQN),近端策略优化(PPO)和软演员(SAC),并检查它们在启用端到端学习驾驶政策方面的作用。此外,我们讨论了在现实世界自动驾驶场景中部署DRL所固有的挑战,包括样本效率低下,安全限制和SIM对差距。最后,本文提出了案例研究和实验结果,这些结果强调了DRL在复杂环境中提高自动驾驶性能的潜力,同时识别未来的研究方向以解决该领域的开放问题。关键字:深入强化学习(DRL),自主驾驶系统(ADS),深Q网络(DQN),近端政策优化(PPO),软演员 - 批评(SAC),端到端学习,SIM到sim-to-to-to-eal toe to toception,感知和控制,感知和控制,安全自动驾驶,安全的自动驾驶,政策学习。1。传统上,自主驾驶任务被分解为模块化组件,例如感知,计划和控制,每个组件单独解决。引言自主驾驶系统(ADS)代表了现代时代最具变革性的技术之一,其潜力通过增强安全性,减少交通拥堵并提高能源效率来彻底改变运输。深度加固学习(DRL)由于其处理动态,复杂的环境的能力,在这些系统的开发中获得了显着的牵引力。drl允许自动驾驶汽车根据周围环境的持续反馈做出决定,这对于确保在现实驾驶条件下安全有效导航至关重要[1]。但是,最新的方法倡导端到端学习系统,该系统利用DRL直接从原始感觉输入中学习最佳驾驶策略
摘要 - 针对分布(OOD)样本的鲁棒性是轨迹预测模型的关键性能指标。但是,最先进(SOTA)模型的开发和排名是由其在单个竞争数据集上的分布(ID)性能驱动的。我们提出了一个OOD测试协议,该协议在两个大规模运动数据集中均质化数据集和预测任务。,我们基于模型的输入和输出侧的代理轨迹和道路几何形状的多项式表示引入了一种新颖的预测算法。随着模型大小,训练工作和推理时间的较小,我们到达Sota Performence进行ID测试,并显着提高OOD测试中的鲁棒性。在我们的OOD测试方案中,我们进一步研究了SOTA模型的两种增强策略及其对模型概括的影响。强调ID和OOD性能之间的对比度,建议将OOD测试添加到轨迹预测模型的评估标准中。
