过去十年,增材制造(又称光聚合 3D 打印)取得了显著进步,使修复牙科的数字化制造成为可能。[1] 如今,3D 打印在牙科领域的应用包括牙科模型、手术导板、透明矫正器、夜间护齿器和夹板。[2,3] 构建精度和资源效率都得到了提高。[4] 立体光刻、数字光处理 (DLP) 和连续液体界面生产等现代 3D 打印技术利用了光聚合,并使用在紫外线照射下发生自由基链增长聚合的树脂。[1] 通常,将不同的光反应性(甲基)丙烯酸酯单体混合在一起形成配方,以定制材料特性。[5] 低树脂粘度(0.1 和 1.3 Pa s)是光聚合 3D 打印应用的主要要求,而光喷射需要的粘度甚至更低,约为 0.01 Pa s。通常会添加反应性稀释剂来降低配方的粘度。[6] 此外,为了设计机械性能,还会使用(甲基)丙烯酸酯功能低聚物。它们可分为三大类,即聚酯(甲基)丙烯酸酯、丙烯酸低聚聚氨酯和环氧丙烯酸酯。[7] 配方中经常含有双酚 A (BPA) 衍生物,例如 2,2-双[4-(2-羟基-3-甲基丙烯酰氧丙基)-苯基]丙烷,也称为双酚 A 甲基丙烯酸缩水甘油酯 (BisGMA)。加入基于 BPA 的刚性芳香族结构可使材料具有高刚度和高玻璃化转变温度,而 BisGMA 的侧链羟基可使其对玻璃、骨骼或牙釉质表面具有良好的粘附性。[8] 这些特性,再加上低固化收缩率,使得 BisGMA 广泛应用于牙科修复材料和热固性材料中。 [9] 尽管如此,使用双酚 A 基树脂也应受到严格审查,因为一些结果表明,双酚 A 的释放要么来自单体杂质,要么来自聚合物降解。[10] 由于 BPA 具有类似雌激素的特性,因此使用基于 BPA 的树脂
易于解除的概念只能通过概念来实现。[1-3]已经在许多尺度和不同的外部触发器上研究了设备中特定形状变形行为的实现。[4]一方面,在系统级别上有许多方法通常由电动机[3,5]压电剂[6,7]或多物质系统驱动,例如,二型。[8]另一方面,通过适应微结构的几何形状可以实现形状变形。这可以在原子量表上进行,例如,使用相变和梯度以及μm -cm水平。多年来,在材料中设计了诸如Poisson的比率(PR)和Young模量之类的线性有效属性。[9] Greaves等。[10]介绍了结构并实现属性的概述。在1990年代已经显示了极端材料的弹性张量,[11]但是它们的实际实力主要是近年来制造技术的发展驱动的。在超材料中,定期布置的单元细胞的特性克服了自然界中发现的特性[12,13](例如,负PR [14-16]和高刚度 - 重量率[17])。此外,添加剂制造可以轻松地更改材料本地单元单元的几何特征(梁厚度,角度)。这种方法可以使所谓的渐变材料中材料特性的不均匀分布,在加载过程中可能导致不同的形状。可以用处理函数和如果以前的条件来描述这种行为。[18–21]设计形状变形行为不仅需要控制恒定属性,而且还需要控制它们进化的方式,例如菌株依赖性PR。在本文中,我们提出了在单位细胞中整合机械机制的不同方式,从而导致各种非线性弹性(但仍然受控)行为。细胞已组装成宏观材料,并且通过适应晶胞的几何参数的适应,局部调整了功能和条件。分布在材料中的不同特性(刚度,PR)的组合导致垂直于施加载荷的特定形状,也显示在参考文献中。[18,19]。此外,逻辑语句允许我们对材料形状进行全局程序。在下文中,我们将显示三种情况如何从增加应变下从初始形状转换为目标形状(见图1)。在第一种情况下,目标形状