摘要 - 可恢复的电池可以实时更改其电池底漆,这使它们能够在操作过程中调整电压。这种独特的功能使连接功率转换器在电池直接与其他直流组件或系统的应用中冗余。目前的论文描述了用于高功率应用的可重构电池的104 kWh原型,并得出了计算完整操作区域电池效率的方程式。电池可以将其电压从0 V调整到1200 V,并达到充电240 kW的功率值,并用于排放280 kW。结果以效率图表示,显示了对电压,功率和电荷状态的依赖性。此外,将效率特征与具有固定细胞拓扑和DC-DC转换器的常规电池进行比较。可重新配置的电池可以在更宽的电压范围内运行,并在充电过程中实现更高的效率,最高效率为44.6 kW,在放电过程中可实现46.7 kW。相反,传统系统的性能优于这些阈值。最后,提出的模型可用于优化可重构电池字符串的设计,并为特定的应用程序和目的准确尺寸大小。
用24 kW的Trudisk激光器进行了实验,具有1030 nm波长和双核纤维,以及适用于24 kW的扫描仪光纤(此光学的特朗普名称为PFO 33(KF023)(KF023),[Pricking et al(2022)])。BrightlineWeld技术允许在100 µm内芯和400 µm外芯之间自由拆分功率,从而稳定钥匙孔并最大程度地减少溅射形成[Speker等人(2018)]。在此提出的实验中,使用了70%的核心与环比率,从而产生平滑的焊缝。放大倍率为3.2,内芯的焦点直径为320 µm,而外芯的焦点直径为1285 µm,相对于内芯,雷莱基长度为6 mm。使用此设置,工作场也很大,工作距离也很大,最大程度地减少了溅射对保护玻璃的影响,并且内核的斑点大小是焊接的典型特征。
HPM 武器可为作战指挥官提供独特的能力,使用可扩展效果武器打击多个目标,适用于各种作战任务。在增强动能武器的使用的同时,HIJENKS 将通过集成在先进机载平台上的新型 HPM 有效载荷,创建打击受附带动能伤害问题限制的目标的选项,从而提供额外的能力。HIJENKS 计划利用最先进的组件和技术,代表了国防部 (DoD) 内最先进的 HPM 系统。HPM 武器在特定频谱的无线电和微波频率内产生不可见的电磁能量束,可对电子目标造成一系列暂时或永久的影响。例子包括非动能禁用计算机系统、损坏目标电子设备、破坏安全和工业控制系统等。HPM 武器的电磁能量可以通过发射或接收元件(如天线)直接耦合到电子目标,或通过孔径或电缆入口点(例如裂缝、接缝、外部电线)间接耦合到电子目标。目标电路中可能会产生电流和电压,从而导致错误信号、系统锁定、系统故障和/或物理损坏。
马里兰州国家港口——海军水面作战中心达尔格伦分部激光武器杀伤力杰出科学家克里斯托弗·劳埃德周三表示,海军在部署高能激光系统方面取得了重大进展,该系统可以满足海军作战部长迈克尔·吉尔迪上将的2021年导航计划对定向能系统的需求,该系统能够击败反舰巡航导弹。
摘要 — 使用有限元频域代码 ANSYS HFSS 和粒子单元 (PIC) 代码 MAGIC 设计和模拟了循环平面正交场放大器 (RPCFA)。RPCFA 是一种高功率微波装置,改编自美国密歇根州安娜堡密歇根大学开发的循环平面磁控管。平面、曲折线和慢波结构的电磁 (EM) PIC 模拟显示,1.3 MW、3 GHz 信号可放大 13.5 dB 至约 29 MW。RPCFA 设计为由密歇根电子长束加速器-陶瓷绝缘体的脉冲功率驱动,该加速器目前配置为输出 −300 kV、1-10 kA 的脉冲,脉冲长度为 0.3-1 µ s。 RF 输入驱动信号将由 MG5193 磁控管提供,该磁控管可在 3 GHz 频率下提供高达 2.6 MW 的 5 µ s 脉冲。EM PIC 模拟还展示了设计的零驱动稳定性,并用于评估由于几个实验参数的变化而导致的性能变化。驱动频率的变化表明 RPCFA 的 3 dB 放大带宽预计为 300 MHz 或 10%。
ERTICAL -外腔面发射激光器 (VECSEL) 因其能够在很宽的波长范围内产生高功率高亮度发射而备受关注 [1]。半导体增益的固有波长多功能性与开放式谐振腔相结合,可以实现从紫外到中红外的基波和频率转换发射 [2]。然而,VECSEL 的技术发展并未均匀分布在所有波长区域,导致某些光谱窗口的覆盖效果不佳。700-800 nm 范围就是一个例子,它最近因在生物光子学 [3]、医学 [4] 和光谱学 [5] 中的应用而引起了人们的关注。此外,该波长范围的频率倍增为紫外发射开辟了新的途径,原子分子和光学物理学可以从窄线宽可调谐激光器中受益,可用于原子冷却和同位素分离 [6]。
Features: + Newly developed flow geometry + Motor concept with optimized noise levels and efficiency + Power electronics with optimized efficiency + Airflow direction blowing over struts + Direction of rotation: counterclockwise, facing the rotor + Housing material: plastic (PBT) + Impeller material: plastic (PA) + Tach output + PWM control input
由于电子零件预期的功率耗散和功率密集,以满足未来的太空任务应用,因此将需要进行热控制硬件和技术的进步,以保持任务温度和可靠性。这样的应用程序正在冷却与空间激光器相关的电子产品。激光冷却要求可以通过单相热传输到面向空间的散热器的情况下满足,并可能包含相变材料。未来的激光冷却要求将需要更高级的硬件,例如微通道,喷雾冷却和喷气撞击。本报告描述了与当前和未来激光冷却需求相关的热控制硬件,并提供了满足未来激光冷却目标的建议。
