高密度航空影像匹配:最新技术与未来前景 N. Haala a*、S. Cavegn a、b a 德国斯图加特大学摄影测量研究所 - norbert.haala@ifp.uni-stuttgart.de b 瑞士西北应用科学与艺术大学测绘工程研究所,瑞士穆滕茨 - stefan.cavegn@fhnw.ch SpS 12 - EuroSDR:NMCA 的创新技术和方法 关键词:匹配、表面、三维、点云、融合、三角测量 摘要:匹配算法的不断创新正在不断提高从航空影像自动生成的几何表面表示的质量。这一发展推动了 ISPRS/EuroSDR 联合项目“高密度航空图像匹配基准”的启动,该项目旨在根据密集多视图立体图像匹配的当前发展情况,对摄影测量 3D 数据捕获进行评估。最初,测试针对不同土地利用和图像块配置的传统航空图像飞行进行基于图像的 DSM 计算。第二阶段将重点放在复杂城市地区的高质量、高分辨率 3D 几何数据捕获上。这包括将测试场景扩展到倾斜航空图像飞行以及生成过滤点云作为相应多视图重建的附加输出。本文使用基准的初步结果来演示
在过去十年中,数据中心取得了巨大进步,能够支持当今的高密度计算。传统上,数据中心使用多个机架的低功耗系统,无法高效完成工作。由于没有意识到封闭的好处,这些传统数据中心因过度冷却房间而遭受严重低效。而且,由于他们使用的是只能运行一个应用程序的敏感机器,他们浪费了能源试图创造完美的环境来满足他们的设备。随着硬件、计算机和编程终于在技术上取得进展,数据中心开始利用这些智能来使他们的建筑运行得更智能。取得了重大进展,为其他行业铺平了道路(见图 2)。今天,一些数据中心的密度为每平方英尺 400 瓦,甚至更高。在相同空间内完成的工作量可能是传统数据中心的 4 到 5 倍。
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化
按体积和目前 MIM 行业中使用的其他常见合金金属粉末等级计算,铝的价格也只有铜价格的三分之一左右。铝 MIM 尚未普及的原因包括其强度较低、难以烧结,以及至今缺乏零件制造商可轻松加工的原料。典型的 MIM 零件尺寸为 5 – 100 克,使用铝 MIM 技术可以为电子和医疗行业制造多种复杂零件。Parmatech Corporation [3] 发布的案例研究讨论了更换因强度不足而失效的塑料铰接齿轮。塑料零件暂时用机加工铝零件更换,然后永久用 17-4 不锈钢更换。铝 MIM 有很多潜在机会来替代这一类别的零件,但它要求零件生产商有更多加工铝 MIM 零件的经验。
碳纳米管 (CNT) 具有一组独特的性能,例如高电流承载能力、高热导率、机械强度和极大的表面积,18 这些特性使其可用于众多应用。现在可以高效地生长高纯度的块状和表面单壁纳米管 (SWNT) 9 13,因此许多应用的生产限制似乎已经得到克服。然而,仔细观察就会发现,对于纳米管森林的许多关键应用而言,现有的生长方法所生成的森林的面积密度和性能仍然低 1 2 个数量级。以用 CNT 取代集成电路中的铜互连线为例,这是半导体路线图的一个重要里程碑。14 16 只有当 CNT 互连线的电阻低于铜时,才会使用 CNT 互连线,而这需要 CNT 面积密度至少为 2 10 13 cm 2 才能降低由量子电阻引起的串联电阻。然而,迄今为止实现的 SWNT 最高密度仅为 7·10·11 cm2,7,17 21 低了 30 倍(图 1)。散热器也存在类似的问题。虽然单个纳米管的导热系数可能与金刚石实心棒相当,3 但是,如果纳米管森林只填充了可用横截面积的 3%,实际导热系数就会低 30 倍,用处不大。22,23 为了克服这些限制,我们需要完全茂密的森林。我们在此介绍了一种催化剂设计,用于生长超高密度纳米管森林,接近所需的 2·10·13 cm2 密度,甚至可以达到更高的密度。
摘要本文强调了诸如厚膜丝网印刷,墨水射流和后发射薄膜工艺等技术的可能组合,并结合激光滴定的细vias,以产生高密度的微型LTCC底物。为了获得内层的银色图案,在陶瓷绿色的床单上应用了常规的厚膜印刷和墨水喷射印刷(使用纳米银颗粒分散墨水)。墨水喷气工艺使用线/空间= 30/30 m m的细线进行金属线。对于层间连接,使用了由紫外线激光形成的直径30 m m的细vias。然后将这些床单彼此堆叠并发射以获得基础。在此基底物上,通过薄膜过程形成了用于翻转芯片的细铜图案。表面表面均由镍钝化和通过电板沉积的金层。用于进行迹线的三个图案操作和细vias的紫外线激光钻孔的组合使得实现精细的螺距LTCC,例如,用于Flip Chip设备安装。
高密度PWB Ryoichi Watanabe和Hong的新电路编队技术赢得了Kim Samsung Electro-Mechanics Co.,Ltd。Suwon,S。韩国摘要为满足普华永道的未来需求,已讨论了普华永道的各种流程,材料和工具的技术。特别重要的是高端PWB的电路形成技术。在这些年中,从工业上讲,良好模式的电路形成方法已经改变了从减法过程到半添加过程(SAP)。SAP可以形成更细的电路,因为它不会引起侧面蚀刻,这是减法方法的问题。但是,SAP的闪光蚀刻过程会导致其他问题,例如由于电路之间的残留种子金属层,电路蚀刻和由于蚀刻而引起的电路分层引起的短缺陷。同样,由于形成电路的绝缘体表面的粗糙度,不仅有良好的电路形成的困难,而且是电特性的损失。在本文中,讨论了一种新的电路形成方法,以克服SAP原因闪光蚀刻过程的问题。它不需要闪光蚀刻过程,因此可以形成更细的模式。该细线电路形成的能力取决于图案抵抗分辨率,并被确认在L/S(线/空间)= 10/10UM或更少的情况下表现良好。也将电路模式埋在绝缘体层中,并且是带有绝缘体表面的刨床,因此电路具有高骨强度,具有绝缘体,并且通过制造设备或工艺之间的处理,损坏较小。此方法适用于建立PCB和FCP作为满足未来需求的电路形成技术。介绍电子设备的演变,该电子设备的发展速度更快,更小,更多功能但更具成本效益,PWBS的各种技术对于较高的密度需要各种技术。三星电力学有限公司,有限公司制造了许多PWB,例如HDI,用于手机,数字静止相机等,BGA软件包,FC BGA包装。为了满足未来的需求,特别是对于FCBGA,由于其高密度,生产FC BGA的产品变得越来越困难。电路的形成是需要在高密度方面快速进步的过程之一。已讨论了作为电路形成过程的减法过程和半添加过程(SAP),以提高其高密度。1,3但是,由于化学蚀刻而引起的减法过程具有侧面蚀刻的基本问题,并且由于闪光蚀刻过程,SAP具有局限性。SAP的闪光蚀刻过程会导致电路蚀刻等问题,如图1所示,在电路底部切割,如果闪光蚀刻不足,则在电路底部和种子层残基。由于种子层通常是铜,与电路相同,因此闪光蚀刻过程不仅蚀刻了种子层,还可以蚀刻电路。因此,电路宽度和厚度必须比闪光蚀刻之前的最终尺寸更宽,更厚,以在闪光蚀刻后保持设计规则。例如,在降低20UM电路的底部分离后,如图1所示,仅粘附的宽度仅为20UM螺距,如图1所示。这被认为是不足以为20UM电路提供足够的剥离强度。当电路变得更细时,由于制造输送机或滚筒的处理损坏,底切将是一个更大的问题,制造业产量将更低。出于这些原因,需要基于新概念的电路形成技术才能使线路电路形成并解决这些技术困难。