背景。日冕环是太阳高层大气的基本构成要素,在极紫外和 X 射线中可见。了解日冕环如何产生能量、构造和演化是理解恒星日冕的关键。目的。我们在此研究光球磁对流如何产生加热日冕环的能量,并将其传输到高层大气中,以及日冕磁环的内部结构如何形成。方法。在 3D 磁流体动力学模型中,我们使用 MURaM 代码研究了一个孤立的日冕环,其两个足点都位于对流区内的浅层中。为了解决其内部结构,我们将计算域限制为一个矩形框,其中包含一个日冕环作为拉直的磁通量管。考虑了场对准热传导、光球层和色球层的灰辐射传输以及日冕中的光学薄辐射损失。足点被允许与周围的颗粒物自洽地相互作用。结果。环被坡印廷通量加热,该通量是通过光球中单个磁场浓度的小尺度运动自洽产生的。由于足点运动,大气上层形成了湍流。我们几乎看不到来自给定足点的不同光球浓度的磁通量管大规模编织加热的迹象。合成发射,就像大气成像组件或 X 射线望远镜所观察到的那样,揭示了响应加热事件而形成的瞬态亮线。总体而言,我们的模型粗略地再现了在日冕环(子结构)内观察到的等离子体的性质和演化。结论。利用这个模型,我们可以建立一个连贯的图像,展示加热太阳表面附近高层大气的能量通量是如何产生的,以及这个过程是如何驱动和控制日冕环的加热和动态的。
“在 1923 年的‘中国间谍气球大恐慌’中,你在哪里?”未来的历史学家可能会问。2 月初的一个周末,美国陷入了一种全国性的歇斯底里,因为一架中国轻于空气的侦察平台悠闲地飞过美国,然后被一架美国 F-22 击落(呼号恰如其分地为 FRANK01 - 回想起第一次世界大战中队成员气球破坏者弗兰克·卢克)。这是社交媒体时代,模因迅速传播,从“美国气球部队”徽章到对动画电影《飞屋环游记》的引用,并将其与对 Sputnik 发射的反应进行比较。然而,有些人对此更为严肃,并警告说,北京可能会使用它在美国上空引爆 EMP 武器或在高层大气中部署化学/生物武器。虽然这些想法可能看起来像是糟糕的科技惊悚片,但媒体的关注、政治上的得分和无能为力的感觉无疑促使美国在气球安全飞过水面后采取了更激进的解决方案。事实上,这似乎并不是第一次在美国和其他国家上空发现来自中国的高空侦察气球(见《数字》,第 10 页)。这也可能与一些飞行员报告的以及近年来曝光的一些 UAP/UFO 报告相吻合。然而,虽然这个气球被发现可能纯属偶然,但这些间谍气球仍有可能被明确设计用来被发现,其主要功能是激起华盛顿的反应,测试美国的反应,并充当北京地缘政治武器库中的另一个工具,以及以最小的代价加剧紧张局势的一种方式。此外,通过击落这只气球,美国也给了北京一个站不住脚的借口,让北京未来有可能击落靠近其军事设施和部队的美国无人驾驶 ISR 资产,并依赖全球观众和媒体不知道国际和国家主权空域之间的区别。登机口革命的发源地 技术支持的机场如何为运营商和乘客服务。
1962 年,美国在太平洋上空 250 英里处引爆了一枚百万吨级核武器。爆炸导致高层大气中电子严重失衡,并与地球磁场相互作用,在太平洋大片地区产生振荡电场。这些场的强度足以损坏一千英里外夏威夷的电子设备,并清楚地展示了电磁脉冲 (EMP) 的影响。军方不久就开始考虑如何在不使用核武器的情况下制造这种脉冲。20 世纪 60 年代末,达尔格伦海军武器实验室的特殊应用部门开始研究如何产生高功率振荡电场,这种电场可用作破坏敌方电子设备的武器。这些设备基本上是无线电早期使用的老式火花隙发射器的高功率版本。为了构造一种能够产生类似核电磁脉冲场的装置,需要将储存的电能转换为射频 (RF) 能量,然后通过天线穿过大气层辐射到目标。这些装置通常将能量储存在高压电容器中,并使用火花隙开关快速释放能量。然后,这会在天线上驱动振荡电流,使其辐射。为了达到核电磁脉冲的典型场强数千伏/米,需要工作电压为数十万伏或更高的装置。20 世纪 70 年代初,人们研究了许多辐射装置。大多数都属于一类称为赫兹振荡器的装置。电容器被充电至高电压,开关闭合,电流在电路中流动,导致储存的能量在电容器的电场和电感器的磁场之间振荡。要将电容器充电到极高的电压,必须使用某种类型的升压变压器。最常用的倍压器之一是马尔克斯发生器。内部电阻和外部辐射的损耗通常会在几个周期后衰减振荡波形。因此,辐射脉冲的时间很短,频率成分很宽。1 图 1 显示了电感电容振荡器(LC 振荡器)的简单示意图。
“一项旨在研究地球大气层内外飞行问题和其他目的的法案。”凭借这个简单的序言,美国国会和总统于 1958 年 10 月 1 日成立了美国国家航空航天局 (NASA)。NASA 的诞生与国防压力直接相关。第二次世界大战后,美国和苏联卷入了冷战,这是一场围绕不结盟国家意识形态和盟友关系的广泛竞争。在此期间,太空探索成为竞争的主要领域,被称为太空竞赛。在 20 世纪 40 年代后期,国防部开展了火箭和高层大气科学研究,以确保美国在技术领域的领先地位。美国总统德怀特·艾森豪威尔批准了一项计划,将一颗科学卫星送入轨道,作为 1957 年 7 月 1 日至 1958 年 12 月 31 日国际地球物理年 (IGY) 的一部分,这是一项收集地球科学数据的合作努力,这标志着向前迈出了重要一步。苏联迅速效仿,宣布了其卫星的轨道计划。1955 年 9 月 9 日,海军研究实验室的先锋计划被选中支持 IGY 工作,主要是因为它不会干扰高优先级的弹道导弹开发计划。它使用非军用维京火箭作为基础,而陆军提议使用红石弹道导弹作为运载火箭。1955 年下半年和 1956 年全年,先锋计划都备受关注,但该计划的技术要求太高,而资金水平太低,无法确保成功。1957 年 10 月 4 日,苏联发射了世界上第一颗人造卫星 Sputnik 1,作为其 IGY 参赛作品,引发了一场全面危机。这给美国舆论带来了“珍珠港”效应,制造了技术差距的假象,并推动了增加对航空航天事业、技术和科学教育计划的支出,以及成立新的联邦机构来管理航空航天研究和开发。更直接的是,美国于 1958 年 1 月 31 日发射了第一颗地球卫星,当时探险者 1 号记录了环绕地球的辐射区的存在。这些区域受地球磁场影响,被称为范艾伦辐射带,部分决定了大气中的电荷和到达地球的太阳辐射。20 世纪 50 年代末和 60 年代初,美国还开始了一系列月球和行星科学任务。作为斯普特尼克号危机的直接影响,NASA 于 1958 年 10 月 1 日开始运营,将之前的美国国家航空咨询委员会原封不动地并入其中:其 8,000 名员工、每年 1 亿美元的预算、三个主要研究实验室(兰利航空实验室、艾姆斯航空实验室和刘易斯飞行推进实验室)和两个较小的测试设施。它迅速将其他组织纳入新机构,尤其是海军的空间科学组