药物设计中的一个普遍挑战与发现化学修饰的配体增加了其对靶蛋白的影响。未充分利用的前进是结构生物学吞吐量的增加,这已经从手工努力发展到数百种不同的配体对现代同步基因中蛋白质的每月吞吐量。但是,缺失的框架是将高通量晶体学数据转换为配体设计的预测模型的框架。在这里,我们设计了一种简单的机器学习方法,该方法可以预测来自不同配体的实验结构与单个蛋白质与生化测量配对的蛋白质 - 配体。我们的主要见解是使用基于物理的能量描述符来表示蛋白质 - 配体复合物和一种学习对方法,从而渗透到结合模式之间的相关差异。我们针对SARS-COV-2主蛋白酶(M Pro)进行了高通量晶体学运动,获得了200多个蛋白质 - 配体复合物及其结合活性的平行测量。这使我们能够设计一步文库合成,从而提高了两个不同的微摩尔命中的效力,超过10倍,以120 nm的抗病毒效率到达非共价和非肽型抑制剂。至关重要的是,我们的方法成功地将配体扩展到了结合口袋的未开发区域,以简单的化学作用在化学空间中执行大而富有成果的动作。
百日咳的主要病原体百日咳是一种重新出现的病原体,最近中国爆发了疫苗耐药菌株,并出现了大环内酯类耐药菌株,这对该疾病的控制提出了新的担忧。因此需要新的疫苗和潜在的新抗生素。百日咳博德特氏菌培养繁琐,需要几天的生长时间才能在琼脂培养基上计数分离的菌落,这使得大规模筛选新的抗百日咳博德特氏菌化合物或对大量免疫血清进行功能评估变得困难。在此,我们开发了一种可扩展、快速、高通量的基于发光的百日咳博德特氏菌生长抑制测定法 (BGIA),以量化用抗百日咳博德特氏菌化合物处理后存活的细菌。发现发光和菌落形成单位之间存在很强的相关性 (r2 = 0.9345, p < 0.0001),并且 BGIA 表现出高灵敏度和重现性。我们在此证明,BGIA 可用于以易于操作和快速的方式量化百日咳博德特氏菌对抗生素的耐药性、对补体和对人血清的敏感性。我们优化了该检测方法,并测试了不同百日咳博德特氏菌菌株和生长条件对血清和补体敏感性的影响。我们还发现了补体独立的抗体介导的百日咳博德特氏菌生长抑制。因此,BGIA 可有效地用于大规模血清研究,以进一步在功能水平上研究抗百日咳博德特氏菌免疫反应,以及用于筛选百日咳博德特氏菌菌株对抗生素或补体的耐药性,以及用于新型抗百日咳博德特氏菌化合物的高通量筛选。
摘要。高质量基因组DNA(GDNA)的分离是植物分子生物学中的一种关键技术。GDNA的质量决定了实时聚合酶链反应(PCR)分析的可靠性。在本文中,我们报告了针对各种植物物种中实时PCR优化的高质量GDNA提取方案。在96孔块中执行,我们的协议提供了高吞吐量。不需要苯酚 - 氯仿和液氮或干冰,我们的方案比传统的DNA提取方法更安全,更具成本效益。该方法需要10毫克的叶片组织才能获得5-10μg高质量的GDNA。光谱测量和电泳用于证明GDNA纯度。提取的DNA在限制酶消化法和常规PCR中有资格。实时PCR扩增足以以非常低浓度(3 pg/μl)检测GDNA。我们的无苯酚 - 氯仿方案的GDNA稀释液标准曲线显示出比苯酚 - 氯仿方案更好的线性(R 2 = 0.9967)(R 2 =
剪接体是一种极其复杂的机器,在人类中由 5 种 snRNA 和 150 多种蛋白质组成。我们扩展了单倍体 CRISPR-Cas9 碱基编辑以靶向整个人类剪接体,并使用 U2 snRNP/SF3b 抑制剂 pladienolide B 研究了突变体。超敏替换定义了含有 U1/U2 的 A 复合物中的功能位点,但也定义了在 SF3b 解离后的第二化学步骤中起作用的成分中的功能位点。可行的抗性替换不仅映射到 pladienolide B 结合位点,还映射到 SUGP1 的 G-patch 结构域,该结构域在酵母中缺乏直系同源物。我们使用这些突变体和生化方法将剪接体解离酶 DHX15/hPrp43 鉴定为 SUGP1 的 ATPase 配体。这些数据和其他数据支持一种模型,即 SUGP1 通过在动力学阻滞下触发早期剪接体分解来促进剪接保真度。我们的方法为分析人类细胞中必不可少的机器提供了一个模板。
摘要 随着电动汽车的普及和无线电子设备的扩展,对二次电池的需求正在迅速增长。 然而,使用最广泛的锂离子电池经常发生火灾事件,限制了市场的增长。 为了避免易燃性,基于固体电解质的系统在下一代锂离子电池中越来越受到关注。 然而,离子电导率的限制和高制造成本等挑战需要进一步的研究和开发。 在本研究中,我们旨在确定一种尚未得到广泛探索的新型氮基固体电解质材料。 我们提出了一种通过高通量筛选(HTS)选择最终材料的方法,详细说明了用于材料选择和性能评估的方法。 此外,我们展示了氮取代材料与碳和氧置换的从头算分子动力学(AIMD)计算和结果,包括阿伦尼乌斯图、活化能和锂离子电导率最高的材料在 300K 下的预测电导率。虽然性能尚未超越传统固态电解质的离子电导率和活性,但我们的结果为探索和筛选新型固态电解质材料提供了系统框架。该方法也可以应用于探索不同的电池材料,并有望为下一代储能技术的创新做出重大贡献。
摘要 动物模型是现代科学家进行生物实验和体内研究假设的重要工具。然而,在过去十年中,提高此类动物实验的通量一直是一个巨大的挑战。传统上,体内高通量分析是通过大规模诱变剂驱动的正向遗传筛选实现的,需要数年时间才能找到致病基因。相反,反向遗传学加速了致病基因的识别过程,但其通量也受到两个障碍的限制,即基因组修饰步骤和耗时的交叉步骤。下一代遗传学被定义为无需交叉的遗传学,能够产生可以在创始代 (F0) 进行分析的基因修饰动物。这种方法是或可以通过基因编辑和基于病毒的高效基因修饰的最新技术进步来实现。值得注意的是,下一代遗传学加速了跨物种研究的进程,它将成为动物实验中的一种有用技术,因为它可以在个体水平上提供遗传扰动而无需交叉。在本综述中,我们首先介绍基于动物的高通量分析的历史,特别关注时间生物学。然后,我们描述了在动物实验中提高基因修饰效率的方法,以及为什么杂交仍然是实现更高效率的障碍。此外,我们提到三重 CRISPR 是实现下一代遗传学的关键技术。最后,我们讨论了下一代哺乳动物遗传学的潜在应用和局限性。
摘要:通过细胞内递送核苷修饰的mRNA向免疫细胞进行免疫调节是一种有吸引力的体内免疫工程学方法,并在传染病,癌症免疫疗法及其他地区应用。脂质纳米颗粒(LNP)已成为一个有前途的核酸输送平台,但LNP设计标准的定义较差,从而使LNP发现筛选过程的限制限制步骤。在这项研究中,我们采用了基于分子条形码的体内LNP筛查中的高通量,以研究LNP组成对免疫tropismism的影响,并在疫苗和全身免疫疗法中应用。在两个肌内(I.M.)和静脉内(i.v.)注射,我们观察到了两种给药途径的免疫种群对LNP吸收的不同影响,从而了解了对体内免疫工程的LNP设计标准的见解。在验证研究中,I.M.的铅LNP公式 给药显示出比使用临床标准脂质Dlin-MC3-DMA(MC3)配制的LNP的脾脏和排水淋巴结的大量mRNA翻译。 i.v.的铅LNP配方 给药显示出在脾脏和外围血液中的有效免疫转染,其中一个铅LNP显示出脾树突状细胞的大量转染,另一种诱导了循环单核细胞的大量转染。在验证研究中,I.M.的铅LNP公式给药显示出比使用临床标准脂质Dlin-MC3-DMA(MC3)配制的LNP的脾脏和排水淋巴结的大量mRNA翻译。i.v.的铅LNP配方给药显示出在脾脏和外围血液中的有效免疫转染,其中一个铅LNP显示出脾树突状细胞的大量转染,另一种诱导了循环单核细胞的大量转染。总的来说,通过体内高通量筛查确定的免疫型LNP对本地和全身传递的mRNA都表现出显着的希望,并证实了从我们的筛选过程中收集的LNP设计标准的价值,该筛选过程
微型和纳米制造技术使设备微型化,这改变了我们研究大脑功能的方式 [1]。几十年来,人们开发了具有高密度电极阵列的微机电系统 (MEMS),用于监测细胞外大脑活动 [2–7]。这些工具的复杂程度稳步提高 [8],目前最先进的工具可以同时访问一千多个神经元 [9]。如今,大量基于电极的新兴技术在电极数量 [9–14]、长期稳定性 [15–17]、用于信号处理的集成电子器件 [9, 18]、用于光遗传学或成像的集成光子学或透明材料 [19–24] 以及用于药物输送的集成微流体 [25, 26] 等方面提供了改进。虽然人们显然希望每一种新工具都能成功采用,但将神经记录设备从最初的研发阶段过渡到基础科学实验室仍面临重大挑战。一个普遍的挑战是为神经科学家提供强大的激励,让他们使用特定类型的设备而不是替代产品 [27]。这种激励可以基于有利的技术能力(例如,结构尺寸、电极的数量或排列),也可以基于不太可量化但同样重要的考虑因素,例如可用性和便利性 [28]。
微生物组越来越被认为是健康的关键因素。肠道菌群通过一系列不同的代谢物调节17个肠道稳态。例如,饮食纤维的微生物发酵产物(SCFAS)等分子已经建立了19个分子,以反映微生物组和/或饮食转移,而SCFAS的变化已有20种与来自癌症的多种胃肠道疾病有关。尽管具有21种生物标志物的潜力,但粪便收集的技术挑战的临床翻译有限。在这里,我们22个粪便擦拭(s'wipe),这是一种使用无毛,质量23光谱兼容纤维素湿巾作为厕纸的超低成本粪便收集方法。标本保存在乙醇24中,无需冷藏,可以通过常规邮件运送。质谱分析25表明,S'Wipe捕获了具有可重现性26的挥发性和非挥发性代谢物,并且对诊断相关的分子进行了验证。我们表明,s'wipe在指导凳子收集方面的性能等效27,从而可以与28个现有研究进行可互换的使用和比较。这种方法非常适合大规模的人群研究,29次纵向跟踪和个性化医学应用。30