皮肤电极通常用于非侵入性电生理学检测来自大脑、心脏和神经肌肉系统的信号。这些生物电子信号以离子电荷的形式从其源头传播到皮肤电极界面,然后被仪器检测为电子电荷。然而,这些信号的信噪比较低,这是由于组织与电极接触界面的高阻抗所致。本文报告称,与体外模型中隔离单个皮肤电极接触的生物电化学特征的临床电极相比,纯由 PEDOT:PSS 制成的软导电聚合物水凝胶的皮肤电极接触阻抗几乎降低了一个数量级(在 10Hz、100Hz 和 1kHz 时分别为 88%、82% 和 77%)。将这些纯软导电聚合物块集成到粘性可穿戴传感器中,与所有受试者的临床电极相比,可以获得具有更高信噪比(平均增加 2.1dB,最大增加 3.4dB)的高保真生物电子信号。这些电极的实用性在神经接口应用中得到了证明。导电聚合物水凝胶使机械臂能够基于肌电图进行速度控制,以完成拾取和放置任务。这项工作为表征和使用导电聚合物水凝胶以更好地耦合人与机器提供了基础。
数字 I/O 计数器 - FP4020 型号最多可将 08 个数字输入集成到装置中。数字输入为高阻抗 24 VDC。该装置还可具有最多 08 个数字输出。输出可以是继电器 (NO) 或晶体管输出 (NPN/PNP)。程序控制 - 子程序 CALL 子程序 RET 功能键下一个主控制设置主控制重置 FP4020 有 06 个带内置 LED 的功能键。这些功能键是屏幕跳转控制设置跳转控制重置 En Intr 相关功能键。用户可以将任何与应用程序相关的任务/操作分配给这些功能键。功能键独立于数字键盘。用户还可以将任务分配给数字键,并在需要时将它们用作功能键。功能 - 报警移动平均数数字滤波器 PID1,4 ® 可以在 FlexiPanels 中定义实时和历史报警。用户友好 报警 上限 下限 函数发生器对象可以在显示屏上定义。报警可以是实时的,也可以是历史的。可以分配按键来确认报警、查看和滚动。 特殊 - 配方 设备设置 设备重置 寄存器设置 ® 配方数据存储在 FlexiPanels 内存中。只需按一下按钮,就可以将一组数据下载到 PLC。一旦进入本地内存,就可以使用简单的数据输入对象编辑配方数据。 直接 I/O 设置 日历 日历操作
摘要 本文提出了一种低功耗宽带射频到基带 (BB) 电流复用接收器 (CRR) 前端,它同时利用了 1/f 噪声消除 (NC) 技术和有源电感器 (AI),工作频率为 1 GHz 至 1.7 GHz,适用于 L 波段应用,包括那些需要高调制带宽的应用。CRR 前端采用单电源,并与 BB 电路共享低噪声跨导放大器 (LNTA) 的偏置电流,以降低功耗。为了最大限度地减少下变频之前射频 (RF) 信号的损失,高阻抗 AI 电路将混频器输入与 CRR 输出节点隔离。1/f NC 电路可抑制泄漏到输出的 LNTA 低频噪声。带有 gm 增强的共栅极 LNTA 以及单端到差分 LC 平衡-不平衡转换器用于增强输入匹配、变频增益和噪声系数 (NF)。所提出的接收器采用 TSMC 130 nm CMOS 工艺制造,占用有效面积为 0.54mm 2 。输入匹配 (S 11 ) 在 1 GHz 至 1 . 7 GHz 范围内低于 − 10 dB。在本振 (LO) 频率为 1 . 3 GHz、中频 (IF) 为 10 MHz 和默认电流设置下,CRR 实现了 41 . 5 dB 的转换增益、6 . 5 dB 的双边带 (DSB) NF 和 − 28.2 dBm 的 IIP3,同时消耗 1.66 mA 电流,电源电压为 1 . 2 V。
使用的信号是差分的:即位由 Data+ 和 Data- 之间的电压差表示。导体被绞合并保持彼此靠近,以便电气干扰以相同的强度影响它们,并且电压差的改变尽可能小。当设备未发送时,它准备“接收”,在通信端口上显示高阻抗。标准 RS-485 (EIA/TIA-485) 5 对输入阻抗设置了一些限制,并定义了每个设备在传输数据时应能够在线路上传输的电流/功率的一些要求。特别是,根据参考标准的规定,如果线路上最多连接 31 个“处于接收模式”的设备,则可以正确传输数据。因此,按照标准规定,RS-485 可确保与连接到总线的最多 32 个设备正确进行通信;并且在每个通信周期中,一个设备处于“传输模式”,其他 31 个设备处于“接收模式”。事实上,由于所有设备都并行连接在一条总线上,因此一次只能有一个设备传输,否则信号会重叠,从而变得无法识别。RS-485 接口不包含任何旨在定义哪个设备有权传输的机制;此任务由所用协议的更高层完成。每个传输字符的结构、其持续时间和传输配置的可能性与之前看到的串行接口 RS-232 相同;例如,可以将数据传输设置为 19200 波特的速度,使用 1 个起始位、1 个停止位和 1 个奇偶校验位,例如处于“偶数”模式。连接到同一总线的所有设备必须具有相同的设置才能相互通信。在工业自动化和能源分配中,大部分通信网络都是通过总线技术实现的,最常用的物理层是 RS-485 接口。
摘要 干电极的使用正在迅速增加。由于干电极的阻抗很高,因此在电极和放大器之间的连接节点处有一个高阻抗节点。这会导致吸收电力线信号,而高 CMRR 放大器对于消除这种情况至关重要。在本文中,我们提出了一种具有高 CMRR 的低功耗低噪声斩波稳定放大器。为了最大限度地降低输入参考噪声,采用了基于反相器的差分放大器。同时,设计了一个直流伺服环路来抑制电极的直流偏移。由于所有级都需要共模反馈,因此每个放大器都使用了合适的电路。此外,在最后一级实施了斩波尖峰滤波器以衰减斩波器的尖峰。最后,为了消除失配和后期布局造成的偏移效应,采用了直流偏移抑制技术。设计的电路采用标准 180 nm CMOS 技术进行仿真。设计的斩波放大器在 1.2 V 电源下仅消耗 1.1 l W。中频带增益为 40 dB,带宽为 0.5 至 200 Hz。其带宽内的总输入参考噪声为 1 l V rms。因此,设计电路的 NEF 和 PEF 分别为 2.7 和 9.7。为了分析所提出的斩波放大器在工艺和失配变化下的性能,进行了蒙特卡罗模拟。根据 200 次蒙特卡罗模拟,CMRR 和 PSRR 分别为 124 dB(标准偏差为 6.9 dB)和 107 dB(标准偏差为 7.7 dB)。最终,总面积消耗为 0.1 mm 2(不含焊盘)。
复合材料是多组分系统,其功能由其成分之间的相互作用决定。化合物的均匀性取决于材料、材料之间的相互作用和合成,并对性能产生重大影响。纳米粒子已被证明可以通过降低界面张力变成表面活性剂来促进不混溶液体的混合 [ 1 ],并可能导致不混溶和可混溶聚合物溶液之间的可逆转变。将磁性纳米粒子添加到分子铁电体中可以合成多铁性材料 [ 2 – 4 ]。尽管自旋交叉复合物本身可以形成纳米粒子 [ 5 – 7 ],但将磁性纳米粒子添加到自旋交叉分子中的研究很少。 [Fe(Htrz) 2 (trz)](BF 4 )(Htrz = 1H-1,2,4-三唑,trz − = 去质子化三唑配体)[7 – 12]就是这样一种自旋交叉复合物,它也已与纳米粒子结合[13, 14]。[Fe(Htrz) 2 (trz)](BF 4 )的特点是自旋态随温度变化而转变,从而引起电导率的变化[9, 15 – 19]。这种特定分子的自旋交叉转变温度通常为 (340–360) K,在接近室温时产生自旋态双稳态[8 – 12, 15 – 20]。通过添加聚苯胺 (PANI) [ 19 , 21 ] 或聚吡咯 [ 21 , 22 ],所得均质复合材料的导通电阻可降低至 < 1 Ω · cm,从而使更小的分子器件成为可能 [ 23 ],而不会因高阻抗而导致长延迟时间。为了了解自旋交叉复合物中自旋态间双稳态协同效应的修改 [ 24 ],已经采用了多种技术 [ 25 – 27 ]。虽然用金属取代 [Fe(Htrz) 2 (trz)](BF 4 ) 中的 Fe 会降低电导率 [ 18 ],但添加 Fe 3 O 4 等金属纳米颗粒可以通过驱动形态变化完全避免此问题。充分利用此类多组分系统的潜力以及由于添加纳米颗粒而产生的修改需要
写保护 (WP#) 写保护 (WP#) 引脚可用于防止写入状态寄存器。与状态寄存器的块保护 (CMP、TB、BP3、BP2、BP1 和 BP0) 位以及状态寄存器保护 (SRP) 位一起使用,可以对部分或整个内存阵列进行硬件保护。WP# 功能仅适用于标准 SPI 和双 SPI 操作,在四路 SPI 期间,此引脚为四路 I/O 操作的串行数据 IO (DQ 2)。保持 (HOLD#) HOLD# 引脚允许在设备被主动选择时暂停设备。当 QE=0(默认)和 HRSW=0(默认)时,HOLD# 引脚启用。当 HOLD# 被拉低时,CS# 为低,DO 引脚将处于高阻抗状态,DI 和 CLK 引脚上的信号将被忽略(无关)。当多个设备共享相同的 SPI 信号时,保持功能非常有用。 HOLD# 功能仅适用于标准 SPI 和 Dual SPI 操作,在 Quad SPI 期间,此引脚为 Quad I/O 操作的串行数据 IO(DQ 3)。 RESET(RESET#) RESET# 引脚允许在设备被主动选择时对其进行复位。当 QE=0(默认)和 HRSW=0(默认)时,RESET# 引脚被禁用。 硬件复位功能仅适用于标准 SPI 和 Dual SPI 操作,在 Quad SPI 期间,此引脚为 Quad I/O 操作或 Quad Output 操作的串行数据 IO(DQ3)。对于 SOP16 封装,RESET# 引脚是专用的硬件复位引脚,与设备设置或操作状态无关。如果不使用硬件复位功能,此引脚可以悬空或连接到系统中的 V CC 。将 RESET# 设置为低电平最短 1us(t HRST )将中断任何正在进行的指令,使设备处于初始状态。 RESET# 恢复高电平后,设备可以在 28us(t HRSL )内再次接受新指令。
b。在待机模式中,输出处于高阻抗状态,而不是OE#输入。自动睡眠模式该设备具有自动睡眠模式,可最大程度地减少功耗。当地址总线的状态保持稳定为T ACC + 30N时,设备将自动进入此模式。DC特征表中的 ICC 4显示了当前规范。 使用标准访问时间,当地址更改时,设备将输出新数据。 读取模式,将设备自动设置为读取设备加电或硬件重置后的数组数据。 检索数据不需要命令。 该设备还可以在完成嵌入式程序或嵌入式擦除算法后读取数组数据。 设备接受扇区擦除悬挂命令后,该设备将进入扇区擦除悬挂模式。 系统可以使用标准读取时间读取数组数据,除了它在擦除悬浮扇区中的地址读取,设备会输出状态数据。 在扇区擦除悬挂模式下完成编程操作后,系统可以再次读取数组数据,并具有相同的例外。 有关更多其他信息,请参见“部门擦除暂停/简历命令”。 系统必须发出重置命令,以重新启用DQ5较高或在自动选择模式时读取数组数据的设备。 有关其他详细信息,请参见“重置命令”。 OE#引脚处于逻辑高级别时输出禁用模式(V B IHICC 4显示了当前规范。使用标准访问时间,当地址更改时,设备将输出新数据。读取模式,将设备自动设置为读取设备加电或硬件重置后的数组数据。检索数据不需要命令。该设备还可以在完成嵌入式程序或嵌入式擦除算法后读取数组数据。设备接受扇区擦除悬挂命令后,该设备将进入扇区擦除悬挂模式。系统可以使用标准读取时间读取数组数据,除了它在擦除悬浮扇区中的地址读取,设备会输出状态数据。在扇区擦除悬挂模式下完成编程操作后,系统可以再次读取数组数据,并具有相同的例外。有关更多其他信息,请参见“部门擦除暂停/简历命令”。系统必须发出重置命令,以重新启用DQ5较高或在自动选择模式时读取数组数据的设备。有关其他详细信息,请参见“重置命令”。OE#引脚处于逻辑高级别时输出禁用模式(V B IH
[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计