DNA甲基化提供了将遗传变异与环境影响联系起来的关键表观遗传标记。我们已经分析了160个人视网膜的基于阵列的DNA甲基化蛋白纤维,具有共同测量的RNA-SEQ和> 800万个遗传变异,在CIS中揭示了遗传调节的位点,在CIS中(37,453个甲基化的定量性状定量特征和12,505表达定量的特性特征)和13,747 DNA甲基化的属性。视网膜特定的三分之一。甲基化和表达定量性状基因座表现出与突触,线粒体和分解代谢有关的生物过程的非随机分布和富集。基于数据的Mendelian ran统治和共定位分析确定了87个靶基因,其中甲基化和基因表达变化可能介导基因型对年龄相关的黄斑变性的影响。综合途径分析揭示了免疫反应和代谢的表观遗传调节,包括谷胱甘肽途径和糖酵解。我们的研究定义了驱动甲基化变化的遗传变异的关键作用,优先考虑基因表达的表观遗传控制,并提出了通过基因型 - 视网膜环境相互作用来调节黄斑变性病理学的框架。
von Krusenstiern L,Liu J,Liao E,Gow JA,Chen G,Ong T,Lotery AJ,Jalil A,Lam BL,Maclaren RE,Xirius Part 1研究小组Xolaris研究小组。与X连锁性视网膜炎与RPGR基因变异的X连锁性视网膜炎相关的视网膜敏感性变化。PMID:36757689 PMCID:PMC9912164)。JAMA Ophthalmology,2023,141(3):275-283 Valastro A,Romano F,Salvetti AP,Choroideremia中的黄斑新生血管化。(PMID:36997407)。眼科。视网膜,2023,7(7):604 Romano F,Boon CJF,Invernizzi A,Bosello F,Casati S,Casati S,Zaffalon C,Riva E,Bertoni AI,Agarwal A,Agarwal A,Kalra G,Cozzi M,Cozzi M,Staurenghi G,Salvetti G,Salvetti AP。在广泛的黄斑萎缩中具有伪曲霉样外观(EMAP)中的微量精度和成像之间的相关性。(PMID:37824814)。视网膜(宾夕法尼亚州费城),2023年Romano,Francesco MD *; Cozzi,Mariano MSC *;戴维德(Davide)MD *的Monteduro *; Oldani,Marta MD *; Boon,Camiel J. F. MD,博士,FEBO†,‡;乔瓦尼(Giovanni)医学博士Staurenghi,Farvo *;萨尔维蒂(Anna Paola)医学博士。 自然过程和类似伪曲鲁森的外观的广泛黄斑萎缩的分类。 视网膜43(3):P 402-411,2023年3月。视网膜(宾夕法尼亚州费城),2023年Romano,Francesco MD *; Cozzi,Mariano MSC *;戴维德(Davide)MD *的Monteduro *; Oldani,Marta MD *; Boon,Camiel J. F. MD,博士,FEBO†,‡;乔瓦尼(Giovanni)医学博士Staurenghi,Farvo *;萨尔维蒂(Anna Paola)医学博士。自然过程和类似伪曲鲁森的外观的广泛黄斑萎缩的分类。视网膜43(3):P 402-411,2023年3月。
通过cerkl基因突变看到的引起视网膜营养不良的北印度人口班萨尔*(1,2,3),debojyoti chakraborty(1)(1)(1)CSIR-基因组学和综合生物学研究所,德里,(2)景点研究,fortis Indiperies,fortis Indies Indive Isporties Indive Isporties Indive Indive Indive Indive Isporties Indive Indiperies,Instriped Isporties Indive Isporties Indive Isporties Indive Isporties Indive Isportion*临床特征,CERKL基因突变的基因型表型相关性,这是我们在印度北部的同类中看到的遗传性视网膜营养不良(IRD)患者的最常见基因突变之一。 材料和方法:研究包括临床诊断患有IRD的患者。 患者进行了超广阔的菲尔德(UWF)眼底照片,眼底自动荧光(FAF),光学相干断层扫描(OCT)。 完成了谱系图表。 下一代测序(NGS)进行遗传测试,分析了临床外显子组。 结果:我们报告了35例选择接受遗传测序的35例CERKL基因突变患者的眼科和遗传发现(在我们的62名22名IRD患者中)。 年龄从17至45岁(中位数25岁)不等。 视觉范围从logmar 0.18到1.8。 OCT显示出103至268微米的中央黄斑厚度(CMT)。 多数患者的眼底表现出黄斑色素的变化,其萎缩,消除或有限的周围视网膜色素变化;轻度的视盘苍白和最小的血管衰减。 在黄斑处的斑点低荧光是最常见的发现,视网膜周围的低自露倍率最小。通过cerkl基因突变看到的引起视网膜营养不良的北印度人口班萨尔*(1,2,3),debojyoti chakraborty(1)(1)(1)CSIR-基因组学和综合生物学研究所,德里,(2)景点研究,fortis Indiperies,fortis Indies Indive Isporties Indive Isporties Indive Indive Indive Indive Isporties Indive Indiperies,Instriped Isporties Indive Isporties Indive Isporties Indive Isporties Indive Isportion*临床特征,CERKL基因突变的基因型表型相关性,这是我们在印度北部的同类中看到的遗传性视网膜营养不良(IRD)患者的最常见基因突变之一。材料和方法:研究包括临床诊断患有IRD的患者。患者进行了超广阔的菲尔德(UWF)眼底照片,眼底自动荧光(FAF),光学相干断层扫描(OCT)。完成了谱系图表。遗传测试,分析了临床外显子组。结果:我们报告了35例选择接受遗传测序的35例CERKL基因突变患者的眼科和遗传发现(在我们的62名22名IRD患者中)。年龄从17至45岁(中位数25岁)不等。视觉范围从logmar 0.18到1.8。OCT显示出103至268微米的中央黄斑厚度(CMT)。多数患者的眼底表现出黄斑色素的变化,其萎缩,消除或有限的周围视网膜色素变化;轻度的视盘苍白和最小的血管衰减。在黄斑处的斑点低荧光是最常见的发现,视网膜周围的低自露倍率最小。所有患者的遗传测序均显示出相同的突变,在CERKL基因的外显子7(CHR2:G.181548785_181548786DEL)中是2个碱基对缺失。偶然,所有患有CERKL基因突变的患者均来自一个族裔群落,提示创始人突变效应。结论:CERKL基因结果中的突变是印度北部IRD的最常见原因之一。受影响的患者显示出明确的早期黄斑受累。这项研究报告了在印度北部一个大种族社区中Cerkl基因中的创始人突变效应的存在。关键词:创始人突变,CERKL基因突变,基因型表型相关,遗传性视网膜营养不良(IRD),色素性视网膜炎(RP)
概述 本文件介绍了玻璃体内血管内皮生长因子 (VEGF) 拮抗剂的使用。VEGF 过度表达被认为是导致糖尿病视网膜病变和其他与新生血管相关的视网膜疾病的原因。Avastin(贝伐单抗)是一种人源化抗 VEGF 抗体,可阻断所有 VEGF 亚型。Lucentis(雷珠单抗)及其生物仿制药 Byooviz(雷珠单抗-nuna)和 Cimerli(雷珠单抗-cqrn)是贝伐单抗的截短形式。Cimerli 被 FDA 指定为 Lucentis 的可互换产品。Beovu(brolucizumab)是一种人源化单链抗体片段,可阻断所有 VEGF-A 亚型。Eylea(阿柏西普)和 Eylea HD(阿柏西普)是重组融合蛋白,可与 VEGF-A 以及胎盘生长因子 (PlGF) 结合。 Vabysmo (faricimab-svoa) 是一种人源化双特异性抗体,可同时靶向 VEGF-A 和血管生成素 2 (Ang-2)。Avastin 最常用于静脉注射作为抗癌剂。虽然 FDA 并未批准将其用于玻璃体内或治疗任何眼部疾病,但它在眼科领域得到广泛使用。配药药房通常将 Avastin 重新包装成一次性使用单位供眼科医生使用。FDA 和美国眼科学会 (AAO) 已发出警告,强调务必从国家药房委员会认可的配药药房获取重新包装的 Avastin,以避免购买到受污染的产品。年龄相关性黄斑变性 (AMD):AMD 是一种以黄斑进行性退化为特征的眼部疾病,是老年人视力丧失的主要原因。当 AMD 导致视网膜后方出现异常血管时,这种情况通常被称为“湿性”或新生血管性 AMD。这些新血管往往很脆弱,在数周至数月内可能会迅速失去中央视力。虽然大多数晚期 AMD 患者不会完全失明,但严重的视力丧失可能会导致残疾。AAO 关于 AMD 的首选实践模式 (PPP) 指出,“使用抗 VEGF 药物(例如阿柏西普、贝伐单抗和雷珠单抗)进行玻璃体内注射治疗是治疗新生血管性 AMD 的最有效方法,也是一线治疗方法。” Beovu 还被批准用于治疗新生血管性年龄相关性黄斑变性,并被 AAO PPP 推荐。然而,上市后安全报告和有关视网膜血管炎和/或视网膜血管阻塞的新警告引发了人们对其相对安全性的担忧。视网膜静脉阻塞:视网膜血液供应阻塞会导致视网膜静脉阻塞。这种疾病最常影响老年人,可能由血栓、糖尿病、青光眼、动脉粥样硬化或高血压引起。视网膜静脉阻塞是第二大最常见的视网膜血管疾病,估计每年有 18 万只眼睛受到影响。AAO 视网膜静脉阻塞 PPP 指出,“黄斑水肿可能使中央视网膜静脉阻塞 (CRVO) 和分支视网膜静脉阻塞 (BRVO) 复杂化。相关黄斑水肿的一线治疗是抗 VEGF。”糖尿病视网膜病变 (DR) 和糖尿病黄斑水肿 (DME):糖尿病视网膜病变是工作年龄美国人失明的主要原因之一。大约 28% 的 40 岁以上的糖尿病成年人患有 DR。DR 和 DME 是由长期高血糖引起的,它会扰乱血流并损害视网膜中的微小血管。在最晚期,DR 会导致视网膜表面长出新的异常血管,从而导致疤痕和视力障碍。这种严重的形式称为增生性糖尿病视网膜病变 (PDR)。有时,液体会渗入黄斑中心,导致黄斑肿胀,从而导致视力模糊。这被称为糖尿病性黄斑水肿。黄斑水肿可能发生在糖尿病视网膜病变的任何阶段。玻璃体内 VEGF 注射已显示出治疗 DME 和预防糖尿病视网膜病变进展的功效。罕见眼部疾病:新生血管性青光眼、非近视性脉络膜新生血管、放射性视网膜病变和早产儿视网膜病变等疾病历来都用贝伐单抗治疗。2023 年,Eylea 成为首个获得 FDA 批准用于治疗早产儿视网膜病变的 VEGF 抑制剂。眼内注射有感染、视网膜脱离和晶状体损伤的风险。这些注射需要治疗医生遵守适当的无菌技术,教育患者有关令人担忧的症状,并在每次注射后监测患者,因为已经发现眼压升高。非近视性原因的脉络膜新生血管、放射性视网膜病变和早产儿视网膜病变历来都用贝伐单抗治疗。2023 年,Eylea 成为首个获得 FDA 批准用于治疗早产儿视网膜病变的 VEGF 抑制剂。眼内注射存在感染、视网膜脱离和晶状体外伤的风险。这些注射需要治疗医生遵守适当的无菌技术,教育患者注意令人担忧的症状,并在每次注射后监测患者,因为已经发现眼压升高。非近视性原因的脉络膜新生血管、放射性视网膜病变和早产儿视网膜病变历来都用贝伐单抗治疗。2023 年,Eylea 成为首个获得 FDA 批准用于治疗早产儿视网膜病变的 VEGF 抑制剂。眼内注射存在感染、视网膜脱离和晶状体外伤的风险。这些注射需要治疗医生遵守适当的无菌技术,教育患者注意令人担忧的症状,并在每次注射后监测患者,因为已经发现眼压升高。
在Etrasimod临床试验中观察到了将风险与药物黄斑水肿联系起来的证据,并已报道了其他S1P受体调节剂。危险因素和风险群体已经假设,患有糖尿病症状,葡萄膜炎或潜在的视网膜疾病病史的患者,例如,患有病视视视网膜屏障功能受损的患者可能处于升高的黄斑水肿风险。风险最小化措施常规风险最小化措施:SMPC第4.4节的特殊警告和使用的预防措施SMPC第4.8节不良效果PL第2节第2节您需要了解的内容采取Velsipity采取VELSIPITYPL第4节第4节可能的副作用额外的风险最小化措施:医疗专业范围•医疗范围<医疗范围<医疗范围•医疗范围<医疗范围<医疗范围<医疗范围<医疗服务
黄斑疾病是西方世界视力丧失的主要原因之一。仅在英国,将近150万人患有这些毁灭性疾病,这些疾病主要影响黄斑,这是视网膜中的一个造成详细中央愿景的地区。在许多患者中,可归因于衰老或遗传突变的细胞变化与视网膜色素上皮(RPE)有关,这是一种维持和支持光敏感视网膜的单层细胞。在没有功能性RPE的情况下,视网膜被损坏并视力恶化。目前,这些疾病没有治疗方法。在过去的二十年中,诱导的多能干细胞彻底改变了我们对视网膜疾病的研究,使研究人员能够在菜肴中产生以前无法接近的RPE细胞。从患者中重新创建这些细胞的能力已提供了新的模型系统,以了解疾病背后的机制,并加速新疗法以治疗视力丧失。
我的主要研究兴趣与视网膜和视神经有关,作为研究神经退行性疾病的模型,例如青光眼,与年龄相关的黄斑变性,阿尔茨海默氏病和肌萎缩性侧面硬化症。我们研究了这些病理条件的基础机制,以制定保护和再生神经元的新策略。
摘要 近年来,基于深度学习 (DL) 的人工智能 (AI) 引起了全球的极大兴趣。DL 已广泛应用于图像识别、语音识别和自然语言处理,但对医疗保健的影响才刚刚开始。在眼科领域,DL 已应用于眼底照片、光学相干断层扫描和视野,在检测糖尿病视网膜病变和早产儿视网膜病变、青光眼样视盘、黄斑水肿和老年性黄斑变性方面实现了强大的分类性能。眼部成像中的 DL 可与远程医疗结合使用,作为筛查、诊断和监测初级保健和社区环境中患者主要眼部疾病的可能解决方案。尽管如此,DL 在眼科中的应用也存在潜在挑战,包括临床和技术挑战、算法结果的可解释性、法医学问题以及医生和患者对 AI“黑箱”算法的接受度。DL 可能会彻底改变未来眼科的实践方式。本综述概述了针对眼科应用的最先进的 DL 系统、临床部署中的潜在挑战以及未来发展方向。
无嘌呤/无嘧啶 (AP) 核酸内切酶-还原/氧化因子 1 (APE1/Ref-1,也称为 APE1) 是一种多功能酶,在 DNA 修复和还原/氧化 (氧化还原) 信号传导中起着至关重要的作用。APE1 最初被描述为碱基切除修复 (BER) 通路中的核酸内切酶。进一步的研究表明,它是调节关键转录因子 (TF) 的氧化还原信号转导中心。尽管人们将大量注意力集中在 APE1 在癌症中的作用上,但最近的研究结果支持将 APE1 作为其他适应症的靶点,包括眼部疾病 [糖尿病视网膜病变 (DR)、糖尿病性黄斑水肿 (DME) 和年龄相关性黄斑变性 (AMD)]、炎症性肠病 (IBD) 等,其中 APE1 对关键 TF 的调节会影响这些疾病中的重要通路。APE1 在 DNA 修复和氧化还原信号转导中的核心作用使其成为癌症和其他疾病的有吸引力的治疗靶点。