tfrd已在中国广泛用于治疗骨质疏松症(OP)。然而,尚未完全阐明TFRD对OP的特定分子机制。我们以前的研究也证明了TFRD可以减弱OP,临床当量剂量为67.5mg/ kg/ d是TFRD治疗的有效剂量。因此,这项研究使用67.5mg/kg作为TFRD与多磁术结合使用的剂量,以研究TFRD在OP处理中的作用机理。这项研究的目的是进一步阐明基于宏基因组和代谢组分分析的TFRD的分子机制来治疗OP。在这项研究中,使用苏木精 - 欧洲蛋白(H&E)染色,微计算机断层扫描(Micro-CT)和骨矿物质密度(BMD)分析来观察TFRD对Ovariectomized(OVX)的药理作用(OVX)。随后,进行了多组学分析,包括宏基因组学,未靶向和短链脂肪酸(SCFAS)代谢组学,以识别TFRD的抗骨质疏松机制是否与肠道微生物和相关代谢物有关。我们的结果表明,TFRD可以改善OVX大鼠小梁骨的微观和密度。17种差异物种,主要来自Akkermansia,bacteroides和phascolatcoltcontocterium Genus,OVX在SCFA中有14种相关的差分代谢产物和乙酸与TFRD相反。此外,根据未靶向的代谢组学分析的结果,发现几种代谢途径,例如苯丙氨酸代谢,苯丙氨酸,酪氨酸和色氨酸生物合成,因此可能在TFRD中起重要作用。为了进一步研究肠道微生物群和相关代谢产物之间的关系,使用了长矛人的相关分析,并表明肠道菌群(如akkermansia粘膜粘膜)可能与几种代谢物和代谢途径密切相关。
背景/目标:异黄酮是植物中发现的雌激素样化合物,其健康作用仍然是模棱两可的。我们研究了韩国乳腺癌幸存者中饮食中的异黄酮摄入量及其相关因素,与无癌女性进行了比较。受试者/方法:使用为期3天的食物记录或食品频率问卷(FFQS)评估了2012年至2019年9家医院的乳腺癌幸存者通常饮食摄入(n = 981,平均年龄52岁)。他们与2,943名无癌女性相匹配,这些妇女完成了FFQ,这是2012年至2016年之间进行的全国性研究的一部分。我们使用了普通韩国食品的类黄酮数据库和苯酚 - 探索数据库来估计异黄酮的摄入量。计算了每个食物或食物组对总异黄酮摄入量的贡献。使用通用线性模型计算了根据生活方式和临床因素的饮食异黄酮摄入量的最小二乘手段。结果:乳腺癌幸存者的平均饮食异黄酮摄入量(23.59 mg/天)高于无癌女性(17.81 mg/day)。包括豆腐,大豆和Doenjang在内的主要食物来源在两组中贡献了超过70%的异黄酮摄入量。我们
糖尿病的特征是胰岛素缺乏或抵抗导致血糖水平升高,对全球健康构成重大挑战。随着其患病率不断上升,对发病率、死亡率和医疗保健成本产生重大影响,迫切需要有效的糖尿病管理策略。天然黄酮类化合物如芹菜素,因其抗氧化、抗炎抗糖尿病特性而成为潜在的治疗剂,但其作用机制尚不清楚。该研究旨在评估芹菜素对 3T3-L1 脂肪细胞中 PI3K/AKT/GLUT4 通路的作用。通过分光光度法测量体外 α 淀粉酶和 α 葡萄糖苷酶抑制活性。通过 MTT 测定法评估细胞毒性。此外,通过实时 PCR 进行基因表达分析。为了确认芹菜素与 PI3K/Akt/GLUT4 信号传导的确切结合相互作用,还进行了分子对接分析。本研究结果表明,芹菜素以剂量依赖性方式显著降低 α 淀粉酶和 α 葡萄糖苷酶抑制活性。q-PCR 分析表明,芹菜素显著改善了高糖诱导的 3T3-L1 脂肪细胞系中胰岛素信号分子 (IR、IRS-1、PI3K、Akt 和 GLUT4) 的 mRNA 表达。分子对接分析证明,芹菜素可能在调节脂肪细胞中的胰岛素代谢信号传导中发挥作用。总体而言,芹菜素作为一种天然类黄酮,在对抗糖尿病及其并发症方面具有潜在的治疗价值,具有广阔的前景,强调了继续研究以充分发挥其治疗潜力并为有效的糖尿病管理策略铺平道路的重要性。
algeria电子邮件:lilia.douaouya @univ-khenchela.dz摘要这项研究研究了幼稚的幼虫块茎水和水甲醇提取物的比较生物学活性和化学组成,该植物是一种带有传统药用用途的植物。两种提取物均评估其抗氧化剂,抗炎和抗菌活性。通过DPPH清除测定法测量抗氧化活性。使用牛血清白蛋白技术的体外抗炎活性。 使用对四个革兰氏阳性和革兰氏阴性细菌和三种真菌的圆盘扩散测定研究了抗菌活性。 总苯酚和类黄酮含量表明,甲醇提取物的总酚含量明显更高(167.4±3。 53μgGae/mg e)和类黄酮含量(36.27±2.18μgQe/mg e),比水提取物。 抗氧化活性表明,芽孢杆菌的甲醇提取物表现出较高的抗氧化活性(IC50 = 1.15±0.02 mg/ml)。 相反,是水提取物对标准的最重要的抗炎活性显示了标准的抗炎活性(二氯烯酸钠)。抗菌活性的研究表明,提取物显示出适度的抗菌和抗真菌活性。 两种提取物均表现出抗菌活性,但甲醇提取物表现出更高的抑制区,尤其是对金黄色葡萄球菌和铜绿假单胞菌的抑制作用。 这种比较分析提供了有关基于不同溶剂提取物的有效性来利用兔子增生的治疗特性的见解。使用牛血清白蛋白技术的体外抗炎活性。使用对四个革兰氏阳性和革兰氏阴性细菌和三种真菌的圆盘扩散测定研究了抗菌活性。总苯酚和类黄酮含量表明,甲醇提取物的总酚含量明显更高(167.4±3。53μgGae/mg e)和类黄酮含量(36.27±2.18μgQe/mg e),比水提取物。抗氧化活性表明,芽孢杆菌的甲醇提取物表现出较高的抗氧化活性(IC50 = 1.15±0.02 mg/ml)。相反,是水提取物对标准的最重要的抗炎活性显示了标准的抗炎活性(二氯烯酸钠)。抗菌活性的研究表明,提取物显示出适度的抗菌和抗真菌活性。两种提取物均表现出抗菌活性,但甲醇提取物表现出更高的抑制区,尤其是对金黄色葡萄球菌和铜绿假单胞菌的抑制作用。这种比较分析提供了有关基于不同溶剂提取物的有效性来利用兔子增生的治疗特性的见解。
背景/目的:冠状病毒病 (COVID-19) 是一个全球性的健康问题,人们正在寻求治疗方案,对能够消除或减轻 SARS-CoV-2 影响的药物的需求日益增加。冠状病毒病会留下永久性的影响,甚至会对免疫系统较弱的患者造成致命影响。考虑到这一重要因素,本研究选择了天然脂类黄酮营养补充剂作为目标药物,该营养补充剂既可用于增强免疫系统,也可用于治疗耳鸣、嗅觉和味觉障碍。材料和方法:对脂类黄酮化合物进行分子对接分析,以了解 SARS-CoV-2、NMDAR 和 VKORC1 蛋白之间的分子相互作用机制。结果:特别是,发现 NSP16(-7.97 kcal/mol)和维生素 K 环氧化物还原酶(-7.13 kcal/mol)中的硝酸硫胺素的对接得分较高。核黄素在 K 环氧还原酶中的插入分数 (-8.66 kcal/mol) 也被发现较高。结论:这些对接结合分数表明这些化合物可用作潜在抑制剂。脂黄酮类化合物可在短时间内有效治疗 COVID-19 的常见症状嗅觉-味觉障碍和耳鸣,并可阻止冠状病毒的复制,这一假设已得到理论证实。
a 罗兹医科大学医学生物学系,波兰罗兹 90 – 151,穆申斯基戈 1 号,罗兹 90 – 214,罗兹医科大学经济与医学信息学系,波兰罗兹 90 – 214,罗兹医科大学生物无机化学系,波兰罗兹 90 – 151,穆申斯基戈 1 号,罗兹 90 – 151,罗兹医科大学医学生物学系学生研究组,波兰罗兹 90 – 151,罗兹医科大学医学生物学系学生研究组,波兰罗兹大学生物与环境保护学院分子生物技术和遗传学系学生研究组,波兰罗兹巴纳恰 12/16 号,罗兹 90 – 237,罗兹大学,滨海环境与社会 UMRi CNRS 7266 LIENSs,拉罗谢尔大学,拉罗谢尔 17042,法国 g波兰罗兹大学生物与环境保护学院分子遗传学系,波莫瑞县 141/143,罗兹 90 – 236 h 波兰罗兹大学生物与环境保护学院分子生物技术与遗传学系,巴纳恰 12/16,罗兹 90 – 237
糖尿病是一种普遍且使人衰弱的代谢疾病,其标志性的血糖水平持续升高,如果不受管理,可以在一系列严重的并发症中达到顶峰。类黄酮,源自植物的多酚化学物质,由于其抗糖尿病性质而引起了糖尿病研究领域的广泛关注。这些天然存在的物质是结构上的15碳,在水果,蔬菜和其他植物性饮食中广泛分布,可提供许多积极的好处,包括调节许多胰岛素和葡萄糖稳态的能力。这些化合物根据其结构差异分为六个主要子类。许多体内和体外研究研究了类黄酮的抗糖尿病潜力。已经发现类黄酮可以调节诸如醇葡萄糖苷酶和酰基酶等酶,这是降低血糖水平的关键酶。新兴的证据表明,类黄酮可以通过调节葡萄糖代谢,胰岛素敏感性和炎症的各种细胞信号通路的能力来发挥其抗糖尿病作用。已证明类黄酮含有抗炎和抗氧化特性。这些品质对于减少炎症和氧化应激至关重要,这对于糖尿病的发作至关重要。本综述的目的是考虑到类黄酮抗糖尿病作用的细胞和分子机制的全面阐明,考虑到它们对参与糖尿病涉及的各种代谢途径的潜在影响。
黄金中黄酮的生物合成途径已被广泛阐明,主要通过根特异性的黄酮途径(Fang等人。2022)。gente异黄酮合成途径起源于肉桂酸(图1),在SBPAL的作用下从氨基酸苯丙氨酸合成为生物合成前体。肉桂酸随后通过cinnamoyl coa连接酶转化为肉桂酸COA。pine chalcone合成酶催化肉桂酸COA产生pinocembrin chalcone,该核蛋白结构蛋白通过chalcone异构酶进行异构化,以产生pinocembrin。然后,类黄酮合成酶将pinocembrin转换为chrysin,该酸蛋白被6-羟化酶进一步羟基羟基羟基酶(Liu et al。2021)。黄氨基蛋白是由Baicalin-7-O-葡萄糖糖基转移酶葡萄糖醛酸糖苷至Baicalin,而Chrysin则被F8H转化为Norwogonin。NORWOGONIN通过O-甲基转移酶(OMT)在位置8的位置进行O-甲基化,以产生Wogonin,最终通过Baicalin-7-O-o-葡萄糖糖基转移酶将其葡萄糖醛酸化为Wogonoside(Pei等人。 2023)。NORWOGONIN通过O-甲基转移酶(OMT)在位置8的位置进行O-甲基化,以产生Wogonin,最终通过Baicalin-7-O-o-葡萄糖糖基转移酶将其葡萄糖醛酸化为Wogonoside(Pei等人。2023)。
黄金中黄酮的生物合成途径已被广泛阐明,主要通过根特异性的黄酮途径(Fang等人。2022)。gente异黄酮合成途径起源于肉桂酸(图1),在SBPAL的作用下从氨基酸苯丙氨酸合成为生物合成前体。肉桂酸随后通过cinnamoyl coa连接酶转化为肉桂酸COA。pine chalcone合成酶催化肉桂酸COA产生pinocembrin chalcone,该核蛋白结构蛋白通过chalcone异构酶进行异构化,以产生pinocembrin。然后,类黄酮合成酶将pinocembrin转换为chrysin,该酸蛋白被6-羟化酶进一步羟基羟基羟基酶(Liu et al。2021)。黄氨基蛋白是由Baicalin-7-O-葡萄糖糖基转移酶葡萄糖醛酸糖苷至Baicalin,而Chrysin则被F8H转化为Norwogonin。NORWOGONIN通过O-甲基转移酶(OMT)在位置8的位置进行O-甲基化,以产生Wogonin,最终通过Baicalin-7-O-o-葡萄糖糖基转移酶将其葡萄糖醛酸化为Wogonoside(Pei等人。 2023)。NORWOGONIN通过O-甲基转移酶(OMT)在位置8的位置进行O-甲基化,以产生Wogonin,最终通过Baicalin-7-O-o-葡萄糖糖基转移酶将其葡萄糖醛酸化为Wogonoside(Pei等人。2023)。