Loading...
机构名称:
¥ 1.0

相互作用系统通常以它们的基态和低能激发的特性为特征。例如,在自旋系统中,低能激发的特性将海森堡模型与伊辛或 XY 模型区分开来,即使基态可能相似。在量子材料中,可以通过仔细分类它们的激发来区分各种各样的有间隙系统(由电荷密度波、强关联或超导引起)。低能激发的特性因材料所表现出的物理行为而异。考虑一个绝缘体,其低能行为可以用相互作用的自旋很好地描述。它将表现出与金属费米液体不同的低能激发,而金属费米液体的低能行为可以用电子准粒子很好地描述。此外,不同的探针(如光导率、中子散射或光发射)可以探测系统的不同方面。举一个具体的例子,我们来看看 Fe 基超导体 FeSe 的低能激发。这些激发既可以从自旋(中子)1 的角度观察,也可以从电荷(光学)2 的角度观察。这两种方法都可以提供有关该材料的互补信息。有些多体相互作用系统可以通过分析确定其光谱。在自旋系统中(如 XY 模型),Holstein-Primakoff 3 或 Jordan-Wigner 4 变换会将系统转换为可以立即确定激发光谱的形式。这是因为自旋系统的激发实际上具有费米子特性,而从原始自旋图像中提取这种特性很麻烦。另一种方法是猜测波函数,然后获得激发,例如在 BCS 理论 5 中

磁振子谱的量子计算

磁振子谱的量子计算PDF文件第1页

磁振子谱的量子计算PDF文件第2页

磁振子谱的量子计算PDF文件第3页

磁振子谱的量子计算PDF文件第4页

磁振子谱的量子计算PDF文件第5页

相关文件推荐

2020 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2020 年
¥2.0
2020 年
¥5.0
2021 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥5.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥3.0
2022 年
¥2.0
2022 年
¥3.0
2021 年
¥9.0
2023 年
¥1.0
2022 年
¥8.0
2023 年
¥3.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥3.0
2023 年
¥2.0
2023 年
¥1.0
2022 年
¥3.0
2024 年
¥6.0
2023 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0