Loading...
机构名称:
¥ 1.0

基于CNN的目标检测器中,特征金字塔被广泛使用来缓解目标实例间尺度变化的问题。这些目标检测器通过自上而下的路径和横向连接来强化特征,主要是为了丰富低级特征的语义信息,而忽略了高级特征的增强,这会导致不同层次的特征之间不平衡,特别是高级特征中严重缺乏细节信息,从而难以得到准确的边界框。在本文中,我们引入了一种新的双管齐下的传导思想,从前向和后向探索不同层之间的关系,可以同时丰富低级特征的语义信息和高级特征的细节信息。在双管齐下的思想指导下,我们提出了一个双管齐下网络(TPNet)来实现高级特征和低级特征之间的双向传递,这有助于准确地检测不同尺度的目标。此外,由于单阶段检测器中难样本和易样本的分布不平衡,定位损失的梯度总是由定位精度较差的难样本主导。这将导致模型偏向难样本。因此,在我们的 TPNet 中,提出了一种基于 IoU 的自适应定位损失,称为 Rectified IoU (RIoU) 损失,以校正每种样本的梯度。Rectified IoU 损失会增加高 IoU 样本的梯度,同时抑制低 IoU 样本的梯度,从而提高模型的整体定位精度。大量实验证明了我们的 TPNet 和 RIoU 损失的优越性。

带整流 IoU 损失的单次双叉检测器

带整流 IoU 损失的单次双叉检测器PDF文件第1页

带整流 IoU 损失的单次双叉检测器PDF文件第2页

带整流 IoU 损失的单次双叉检测器PDF文件第3页

带整流 IoU 损失的单次双叉检测器PDF文件第4页

带整流 IoU 损失的单次双叉检测器PDF文件第5页

相关文件推荐