Loading...
机构名称:
¥ 1.0

预测分析模型根据历史数据预测未来事件的发生,例如产品需求、收入预测、客户流失、员工流失、欺诈、贷款偿还违约等。在许多业务问题中,我们尝试处理多个变量的数据,有时甚至超过观测值的数量。回归模型帮助我们理解这些变量之间的关系,以及如何利用这些关系使用监督学习算法进行决策。本模块的主要目标是了解如何使用回归和因果预测模型来分析实际业务问题,例如预测、分类和离散选择问题。重点是基于案例的实际问题解决,使用预测分析技术来解释模型输出。参与者将接触 MS Excel、R、Python 和 SPSS 等软件工具,以及如何使用这些软件工具执行回归、逻辑回归和预测。

管理者人工智能 - IIMBx

管理者人工智能 - IIMBxPDF文件第1页

管理者人工智能 - IIMBxPDF文件第2页

管理者人工智能 - IIMBxPDF文件第3页

管理者人工智能 - IIMBxPDF文件第4页

管理者人工智能 - IIMBxPDF文件第5页

相关文件推荐

2024 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2023 年
¥3.0
2024 年
¥4.0
2023 年
¥1.0
2013 年
¥3.0
2024 年
¥1.0
2023 年
¥5.0
2023 年
¥2.0
2020 年
¥9.0
2024 年
¥4.0
2022 年
¥3.0
2021 年
¥6.0
2023 年
¥1.0
2024 年
¥3.0
2024 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0
2020 年
¥3.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥11.0
2024 年
¥2.0
2024 年
¥10.0
2024 年
¥1.0