研究报告合著者、新加坡国立卫生研究院国家医疗集团 (NHG) 眼科研究所青光眼服务部门负责人 Leonard Yip 博士表示:“社区中许多青光眼患者仍未得到诊断,而在印度这样的发展中国家,未确诊病例的比例可能远远超过 90%。虽然病例通常是在常规眼科检查中发现的,但由于需要专业且昂贵的设备或训练有素的专家,因此基于人群的筛查具有挑战性。手动检查单个视网膜图像的过程也很耗时,并且取决于专家的主观评估。相比之下,我们使用人工智能的方法可能更高效、更经济。” 研究报告的主要作者、南洋理工大学电气与电子工程学院副教授王丽坡表示:“通过结合机器学习技术,我们的团队开发了一种筛查模型,可以从眼底图像诊断青光眼,从而无需眼科医生进行各种临床测量(如眼内压)即可进行诊断。我们强大的自动青光眼诊断方法易于使用,这意味着任何医疗从业者都可以使用该系统来帮助进行青光眼筛查。这将特别有助于眼科医生较少的地区。” 该团队目前正在 TTSH 拍摄的更大的患者眼底图像数据集上测试他们的算法。他们还在研究如何将该软件移植到手机应用程序上,这样当与眼底照相机或手机镜头适配器结合使用时,它就可以成为现场可行的青光眼筛查工具。 工作原理 NTU 和 TTSH 团队开发的自动青光眼诊断系统使用一组算法来分析由两个相机从不同视角成对拍摄的立体眼底图像(见图 1)。这些 2D 的“左”和“右”眼底图像组合在一起时有助于形成 3D 视图。科学家说,使用两张图像可以确保如果一张图像质量较差,另一张图像通常可以补偿,系统可以保持其准确的性能。这套算法由两个部分组成:深度卷积神经网络和注意力引导网络。前者模仿人类大脑适应学习新事物的生物过程,而注意力引导网络模仿大脑选择性关注一些相关特征的方式——在本例中,是眼底图像中的视神经头区域(见图 2)。然后将这两个组件的输出融合在一起以生成最终的预测结果。
主要关键词