尽管网络架构性能取得了实质性进步,但对抗性攻击的敏感性使深度学习难以在安全关键型应用中实施。本文提出了一种以数据为中心的方法来解决这个问题。一种具有不同亮度值的非局部去噪方法已被用于从修改后的国家标准与技术研究所数据库 (MNIST) 和加拿大高级研究中心 (CIFAR-10) 数据集生成对抗性示例。在扰动下,该方法在 MNIST 数据集中提供了高达 9.3% 的绝对准确度提高,在 CIFAR-10 数据集中提供了高达 13% 的绝对准确度提高。使用具有更高亮度值的变换后图像进行训练可提高分类器的鲁棒性。我们已经证明迁移学习不利于对抗性机器学习。结果表明,简单的对抗性示例可以提高弹性并使深度学习更易于应用于各种应用。
主要关键词





