之后,使用受控门。使用的受控门类型与 Z 门相关,我们正在寻找其特征值相位。如果我们要找到另一个门/酉矩阵(例如NOT 门)的特征值相位,我们需要使用与该新门相关的受控门(例如CNOT 门)。我说它与 Z 门相关,因为除了受控 Z 门之外,它还使用受控 Z k 门,其中 k = 2 l ,l 从 0 到 n − 1。再次,n 是 c 寄存器中的量子比特数。受控 Z k 门意味着,对于基态,如果控制量子位为 0,它对目标量子位不起作用。如果控制量子位为 1,它将对目标量子位应用 Z k 门。控制量子位是 c 寄存器中的量子位之一,目标量子位是 b 寄存器中的量子位。c 寄存器中的每个量子位都充当受控门之一的控制位。Z k 门相当于应用 Z 门 k 次。在这种情况下,l 从 0 到 1,因此 k 可以是 1 或 2。因此,c 寄存器的量子位 0 连接到 l = 0 的受控 Z k,而 c 寄存器的量子位 1 连接到 l = 1 的受控 Z k。换句话说,c 寄存器的量子位 0(较低有效位)是受控 Z 2 0 门的控制量子位,即受控 Z 门。而 c 寄存器的量子位 1(较高有效位)是受控 Z 2 1 门的控制量子位,即受控 Z 2 门。当应用受控的 Z k 门时,b 寄存器量子比特会发生什么?请注意,b 寄存器具有 Z 的特征向量。因此,根据等式,该操作将给出 Z 的特征值。( 28.11 )。也就是说,U PS,π | e 1 ⟩= Z | e 1 ⟩= e i 2 π 1