Loading...
机构名称:
¥ 1.0

脑电图 (EEG) 可以控制机器用于人类目的,尤其是对于进行康复锻炼或常规任务的残疾人。机械手的脑机接口 (BCI) 使用深度学习将 (EEG) 大脑活动转换为机械手的命令,使用户可以通过想象的运动向右或向左移动他们的手。它可以使瘫痪者执行基本的手部动作,并帮助康复机器人帮助中风患者恢复手部功能,通过提供基于机器学习对其动作和意图的解释的指导性练习。人工智能算法,特别是深度学习,将隐含的脑波模式和意图分类和识别为脑电图。然而,EEG 信号具有高度的非平稳性,使其分析具有挑战性。因此,选择合适的信号处理策略变得至关重要。本研究旨在建立一个混合模型来指导机械臂运动,该模型应用运动方向和左右分类。通过将预训练的卷积神经网络(CNN)-Inception V3模型与传统的机器学习算法(逻辑回归(LR))(被认为是一种广泛的分类方法)相结合,并确定合适的信号处理方法,短时傅里叶变换(STFT)和连续小波变换(CWT)以选择最准确的方法对所提模型进行分类。所提出的混合模型的训练结果表明,STFT 比 CWT(0.997)具有更高的平均准确率(0.998),使其对九个受试者的当前数据集进行更精确的分类并提高混合 CNN 模型训练的有效性。同样,在评估指标上,STFT 实现的平均准确率的评估结果高于 CWT(0.997 > 0.797)。这表明 STFT 是特征提取的更好选择,提高了带有逻辑回归的混合 CNN 模型的泛化和鲁棒性。

手部运动康复的深度学习模型

手部运动康复的深度学习模型PDF文件第1页

手部运动康复的深度学习模型PDF文件第2页

手部运动康复的深度学习模型PDF文件第3页

手部运动康复的深度学习模型PDF文件第4页

手部运动康复的深度学习模型PDF文件第5页

相关文件推荐

2025 年
¥18.0
2020 年
¥1.0