Loading...
机构名称:
¥ 1.0

电池电力存储一直是达到可持续能源网络的主要策略之一。它们足以存储能源并稍后释放,支持大量可变的可再生电能。在这种情况下,锂空气电池(实验室)有可能成为高容量电池,其理论能量密度高于目前可用的锂离子。但是,它们在商业上仍然是不可行的。在过去的几十年中,随着稳定电解质,多孔阴极和催化剂的发展,实验室技术取得了巨大进展。尽管如此,对锂金属电极的保护受到了较小的关注,尤其是防御大气中存在的反应性物质,例如水和氧气。在这项工作中,合成了一个保护膜以保护金属锂阳极免受水的影响。使用聚四甲基乙二醇(PTMEG),4,4-二苯基甲基甲烷二异氰酸酯(MDI)和1,4丁二醇与甘油作为链扩展器的1,4丁二醇和甘油混合物进行合成。使用含碳纸作为阴极,金属锂作为阳极和0.1 mol.l -1硅氯酸锂(LICLO 4)组装的脂质锂氧(Li-O 2)电池测试合成的膜,并在二甲基硫代(DMSO)中以550 ppm的浓度为dimethyl smo(liclo 4)。此外,将电池与新型聚合膜的可环性与标准玻璃超细纤维分离器进行了比较。结果显示,与聚合物分离器在玻璃超细纤维分离器上组装的电池可环性更高。

锂空气电池的聚合物分离器合成

锂空气电池的聚合物分离器合成PDF文件第1页

锂空气电池的聚合物分离器合成PDF文件第2页

锂空气电池的聚合物分离器合成PDF文件第3页

锂空气电池的聚合物分离器合成PDF文件第4页

锂空气电池的聚合物分离器合成PDF文件第5页

相关文件推荐

2023 年
¥1.0
2023 年
¥1.0
2024 年
¥4.0
2025 年
¥1.0
2023 年
¥1.0