Loading...
机构名称:
¥ 1.0

随着人们重新致力于建立可持续的生物经济,人们的兴趣从石油基化学品的生产转向生物制造。为了使生物制造与化学合成具有竞争力,开发能够有效利用廉价且易得原料的微生物细胞工厂非常重要。这些原料随后被代谢,产生高滴度的增值产品,这些产品可以轻松扩大到商业规模。合成生物学的进步为高效的微生物设计和改进铺平了道路,从而降低了原料生物加工的成本和时间。这些细胞工厂可以通过利用迭代和系统的设计-构建-测试-学习 (DBTL) 循环微调相关代谢途径来进一步优化 ( Carbonell 等人,2018 年)。目前,自动化和机器学习技术正在被整合到 DBTL 循环中,以提高开发高效微生物菌株的通量、效率和周转时间(Carbonell 等人,2018 年)。最近,测序和 CRISPR/Cas 技术的出现使得开发分子工具箱来编辑微生物宿主基因组成为可能,这是菌株工程的核心原则,也是 DBTL 循环的基础。与此同时,组学技术开发方面的进展产生了大量数据,用于构建强大的基因组规模代谢模型,可用于预测和优化生物制造过程中微生物细胞工厂的代谢通量。基因组编辑技术已经在包括细菌和酵母在内的少数微生物菌株中得到了充分证实(Yang & Blenner 2020;Arroyo-Olarte 等人,2021;Krogerus 等人,2021 年)。未来的工作将把这些工具应用于更有能力生产特定增值化合物的非传统微生物。在这个研究课题中,我们重点介绍了一系列评论和原创研究,涵盖了基因组策略的几种应用(图 1),这些策略被用于改善复杂的糖消耗,以及真核细胞工厂中非天然化合物的生产。转录组数据对于理解不同条件下微生物宿主的整体基因表达至关重要(Caspeta 等人,2014 年;Fletcher 等人,2017 年)。这些数据可以输入基因组规模的代谢模型和 DBTL 循环,以制造微生物细胞工厂

高效微生物细胞工厂的基因组策略

高效微生物细胞工厂的基因组策略PDF文件第1页

高效微生物细胞工厂的基因组策略PDF文件第2页

高效微生物细胞工厂的基因组策略PDF文件第3页

高效微生物细胞工厂的基因组策略PDF文件第4页

相关文件推荐

2024 年
¥1.0
2023 年
¥2.0
2007 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0