虽然最近的突破已经证明了嘈杂的中型量子 (NISQ) 设备能够在经典的难处理采样任务中实现量子优势,但使用这些设备解决更实际相关的计算问题仍然是一个挑战。实现实际量子优势的提案通常涉及参数化量子电路 (PQC),其参数可以进行优化以在整个量子模拟和机器学习中找到解决各种问题的解决方案。然而,训练 PQC 以解决实际问题仍然是一个重大的实际挑战,这主要是由于随机初始化的量子电路的优化景观中存在贫瘠高原现象。在这项工作中,我们引入了一种可扩展的程序,用于利用经典计算资源来确定 PQC 的任务特定初始化,我们表明这显著提高了 PQC 在各种问题上的可训练性和性能。对于特定的优化任务,该方法首先利用张量网络 (TN) 模拟来识别有希望的量子态,然后通过高性能分解过程将其转换为 PQC 的门参数。我们表明,这种特定于任务的初始化避免了贫瘠的高原,并有效地将经典资源的增加转化为训练量子电路的增强性能和速度。通过展示一种使用经典计算机来提升有限量子资源的方法,我们的方法说明了量子计算中量子和量子启发模型之间的这种协同作用的前景,并开辟了利用现代量子硬件的力量实现实际量子优势的新途径。
主要关键词