尽管张量网络是模拟低维量子物理的有力工具,但张量网络算法在较高空间维度上的计算成本非常高。我们引入了量子规范网络:一种不同类型的张量网络假设,对于较大的空间维度,模拟的计算成本不会明显增加。我们从量子动力学的规范图 [ 1 ] 中汲取灵感,它由每个空间斑块的局部波函数组成,相邻斑块通过幺正连接相关。量子规范网络 (QGN) 具有类似的结构,只是局部波函数和连接的希尔伯特空间维数被截断。我们描述了如何从通用波函数或矩阵积态 (MPS) 获得 QGN。对于 M 个算子,任何波函数的所有 2 k 点相关函数都可以通过键维数为 O ( M k ) 的 QGN 精确编码。相比之下,仅当 k = 1 时,量子比特的 MPS 通常需要指数级更大的键维数 2 M / 6。我们提供了一种简单的 QGN 算法,用于近似模拟任意空间维度中的量子动力学。近似动力学可以实现时间无关的汉密尔顿量的精确能量守恒,并且空间对称性也可以精确保持。我们通过模拟多达三个空间维度中的费米子汉密尔顿量的量子猝灭来对该算法进行基准测试。
主要关键词