摘要 — 我们提出了一个统一的深度学习框架,用于基于脑电图 (EEG) 信号识别用户身份和识别想象动作,以用作脑机接口。我们的解决方案利用一种新颖的移位子采样预处理步骤作为数据增强的形式,并使用矩阵表示来编码多电极 EEG 信号固有的局部空间关系。然后将生成的类似图像的数据输入到卷积神经网络以处理局部空间依赖性,并最终通过双向长短期记忆模块进行分析以关注时间关系。我们的解决方案与最先进的几种方法进行了比较,在不同任务上表现出相当或更优异的性能。具体而言,我们在动作和用户分类任务中都实现了 90% 以上的准确率。在用户识别方面,在已知用户和手势的情况下,我们的等错误率达到 0.39%,在更具挑战性的未知用户和手势的情况下,我们的等错误率达到 6.16%。我们还进行了初步实验,以便将未来的工作引导到依赖于一组精简的 EEG 电极的日常应用。
主要关键词