点击购买,资源将自动在新窗口打开.
获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
使用大数据进行贝叶斯计算的常见分裂方法是分区数据,分别对每一部分进行局部推断,并结合结果以获得全局后近近似值。虽然在概念上和计算上具有吸引力,但该方法涉及有问题的需要,也需要将局部推断的先验分开;这些疲软的先验可能无法为每个单独的计算提供足够的正则化,从而消除了贝叶斯方法的关键优势之一。为了解决这一难题,同时仍保留了基本局部推理方法的普遍性,我们将期望传播(EP)的想法应用于分布式贝叶斯推论的框架。鉴于其他近似值和先验的状态,迭代的想法是迭代地更新局部可能性的近似值。
主要关键词