抽象的气候降低降级,这是从低分辨率模拟中生成高分辨率气候数据的过程,对于理解和适应区域和本地规模的气候变化至关重要。深度学习方法已被证明在解决此问题方面很有用。但是,存在研究通常集中在一个特定任务,位置和变量的培训模型上,因此它们的可推广性和可传递性受到限制。在本文中,我们评估了培训深度学习对多种气候数据集的深度学习模式的效果,以了解更多可靠和可转移的表示形式。我们使用CNN,傅立叶核电运算符(FNOS)和视觉变压器(VIT)评估体系结构零射击传递性的有效性。我们以实质性地评估了降尺度模型的空间,可变和产物的可传递性,以了解这些不同体系结构类型的普遍性。