摘要鉴于培训机器学习模型所需的计算成本和技术专长,用户可以将学习任务委托给服务提供商。学习委派具有明显的好处,同时引起了人们对信任的严重关注。这项工作研究了不受信任的学习者可能滥用权力。我们展示了恶意学习者如何将无法检测到的后门种植到分类器中。在表面上,这样的后门分类器的行为正常,但实际上,学习者是一种改变任何输入分类的机制,只有轻微的扰动。重要的是,如果没有适当的“后门钥匙”,该机制就会隐藏起来,并且无法通过任何计算结合的观察者检测到。我们展示了两个用于种植无法检测到的后门的框架,并提供了无与伦比的保证。