Loading...
机构名称:
¥ 2.0

深层神经网络(DNNS)在众多领域取得了巨大的成功,并且它们在与PDE相关的问题上的应用正在迅速发展。本文使用DNN将学习Lipschitz操作员在Banach空间上使用DNN的概括错误提供了估计,并将其应用于各种PDE解决方案操作员。目标是指定DNN宽度,深度以及保证某个测试错误所需的训练样本数量。在对数据分布或操作员结构的轻度假设下,我们的分析表明,深层操作员学习可以放松地依赖PDE的离散化解决方案,从而减少许多与PDE相关的问题的诅咒,包括椭圆方程,抛物线方程,抛物线方程和汉堡方程。我们的结果还适用于在操作员学习中有关离散化侵权的见解。

深度操作员的学习减少了PDE的维度的诅咒

深度操作员的学习减少了PDE的维度的诅咒PDF文件第1页

深度操作员的学习减少了PDE的维度的诅咒PDF文件第2页

深度操作员的学习减少了PDE的维度的诅咒PDF文件第3页

深度操作员的学习减少了PDE的维度的诅咒PDF文件第4页

深度操作员的学习减少了PDE的维度的诅咒PDF文件第5页

相关文件推荐

2021 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
1900 年
¥2.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2025 年
¥2.0
2024 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥5.0
2024 年
¥1.0
2021 年
¥1.0
2025 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥6.0
2024 年
¥8.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0