摘要:量子机学习提供了新颖的范式来解决传统自然语言过程中的局限性,例如固定上下文长度和计算效率低下。在这项工作中,我们提出了Qmamba,这是Mamba体系结构的第一个量子适应,将选择性状态空间模型与量子计算集成在一起,以实现有效且可扩展的文本生成。Qmamba利用量子和纠缠等量子原理来实现无界的上下文大小,并减少了计算复合物。我们的贡献包括开发针对硬件结合的量子生成模型,编码,嵌入和测量技术方面的进步,以及其在模式复制和上下文挑战任务上的表现,例如“ Haystack中的针刺”。实验结果证实了Qmamba在不同序列长度上保持高效率和性能的潜力,为未来量子增强自然语言处理的探索奠定了基础。
主要关键词