Loading...
机构名称:
¥ 1.0

摘要。我们探讨了采用云代表工具和原理,以锻造灵活和可扩展的基础架构,旨在支持分析框架 - 在高光度大型强调撞机(HL-LHC)时代为Atlas实验开发的框架。该项目最终建立了一个联合平台,整合了来自各种提供商的Kubernetes群集,例如Tier-2中心,第3层中心,以及来自国家科学基金会项目的Iris-Hep可伸缩系统实验室。一个统一的接口进行了简化容器化应用程序的管理和缩放。通过与分析效率集成,使Jupyter / Binder笔记本电脑和DASK工人的溢出到TIER-2资源来实现增强的系统可伸缩性。我们调查了“拉伸”(在大型网络)集群模式的灵活部署方案,包括集中式的“灯光管理”模型,Kubernetes服务的远程管理以及完全自主的站点管理的群集方法,以适应各种操作和安全要求。该平台在多群集演示器中展示了其e ffi cacy,以使用Co ff ea,servicex,uproot和dask以及rdataframe等工具进行低延迟分析和高级工作流程,并说明了其支持各种处理框架的能力。该项目还为Atlas软件和计算登机事件提供了强大的用户培训基础架构。

Atlas的建筑可扩展分析基础架构

Atlas的建筑可扩展分析基础架构PDF文件第1页

Atlas的建筑可扩展分析基础架构PDF文件第2页

Atlas的建筑可扩展分析基础架构PDF文件第3页

Atlas的建筑可扩展分析基础架构PDF文件第4页

Atlas的建筑可扩展分析基础架构PDF文件第5页