不确定性量化对于评估机器学习模型的预测质量至关重要。在极端学习机器(ELM)的情况下,文献中提出的大多数方法都对数据进行了强有力的假设,忽略输入权重的随机性或忽略了置信估计的偏见贡献。本文提出了克服这些限制并提高对ELM变异性的理解的新颖估计。分析推导是在一般假设下提供的,旨在识别识别和解释不同变异源的贡献。在同性恋性和异性恋性下,提出了几种方差估计值,进行了投资和数值测试,显示了它们在复制预期方差的有效性。最后,通过采用关键方法来讨论置信间隔估计的可行性,从而提高了榆树用户对某些陷阱的认识。该论文与Scikit-Learn兼容的Python库相同,从而实现了本文中所有讨论的所有估计值的有效计算。2021作者。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
主要关键词