摘要。随着自主着陆系统中深度学习技术的发展不断增长,面对可能的对抗性攻击,主要挑战之一是信任和安全。在本文中,我们提出了一个基于对抗性学习的框架,以使用包含干净本地数据及其对抗性版本的配对数据来检测着陆跑道。首先,本地模型是在大型车道检测数据集上预先训练的。然后,我们求助于预先训练的模型,而不是利用大实例 - 自适应模型,而是诉诸于一种称为比例和深度特征(SSF)的参数 - fne-fne-tuning方法。其次,在每个SSF层中,干净的本地数据及其广泛的广告版本的分布被列出,以进行准确的统计估计。据我们所知,这标志着联邦学习工作的frst实例,该工作解决了登陆跑道检测中对抗性样本问题。我们对降落方法跑道检测(猪油)数据集的合成和真实图像的实验评估始终证明了所提出的联邦对抗性学习的良好性能,并对对抗性攻击进行了鲁棒。
主要关键词





