走向数据科学领域信息情报检索

在数据科学领域分享概念、思想和代码。Towards Data Science Inc.是一家在加拿大注册的公司。它为成千上万的人提供了一个交流思想、扩展对数据科学理解的平台。

柏拉图的洞穴和数据阴影

Plato’s Cave and the Shadows of Data

关于真理,幻觉以及数据可以在柏拉图的洞穴之后复制的数据和数据阴影首先出现在数据科学方面。

使用Google的LangeXtract和Gemma进行结构化数据提取

Using Google’s LangExtract and Gemma for Structured Data Extraction

使用Google的LangeXtract和Gemma进行结构化数据提取,从langeXtract和llms帖子中有效,准确地从长期的非结构化文本中提取结构化信息,首先是朝向数据科学的。

变形金刚中的位置嵌入:绳索和alibi的数学指南

Positional Embeddings in Transformers: A Math Guide to RoPE & ALiBi

学习gpt的猿,绳索和不在场的位置嵌入 - 直觉,数学,pytorch代码以及在变形金刚的TinyStoriesthe后位置嵌入的实验:绳索和艾比利的数学指南首先出现在数据科学上。

Google的URL上下文扎根:Rag棺材中的另一个钉子?

Google’s URL Context Grounding: Another Nail in RAG’s Coffin?

Google与AI相关版本中的热连胜始终没有减弱。就在几天前,它为双子座发布了一种名为URL上下文接地的新工具。 URL上下文接地可以独立使用,也可以与Google搜索接地结合在一起,以深入研究Internet内容。什么是URL背景接地?简而言之,这是一种[…] Google的URL上下文接地的方式:Rag棺材中的另一个钉子?首先出现在数据科学上。

llm监视和可观察性:与langfuse的动手

LLM Monitoring and Observability: Hands-on with Langfuse

了解LLM监视和可观察性的基本原理,从跟踪到评估,再到使用Langfusethe后LLM监测和可观察性设置仪表板:与Langfuse的动手最初出现在数据科学上。

为什么您的提示不属于git

Why Your Prompts Don’t Belong in Git

在源中存储提示的隐性成本codethe帖子为什么您的提示不属于git,首先出现在数据科学上。

如何基于Google Cloud上的经典机器学习工作负载

How to Benchmark Classical Machine Learning Workloads on Google Cloud

利用CPU用于实用的,具有成本效益的机器学习帖子如何在Google Cloud上进行基准的经典机器学习工作负载首先出现在数据科学方面。

为什么科学必须与生成AI共同创造以打破当前的研究障碍

Why Science Must Embrace Co-Creation with Generative AI to Break Current Research Barriers

致科学界的公开信中,为什么科学必须与生成AI进行共同创造,以打破当前的研究障碍,这首先出现在数据科学方面。

使用DSPY优化的系统llm提示工程

Systematic LLM Prompt Engineering Using DSPy Optimization

本文是LLM提示迭代的迷人和快速发展的科学的旅程,这是大型语言模型操作(LLMOPS)的基本组成部分。我们将使用现实世界数据集生成客户服务响应的示例,以展示如何以系统的方式开发生成器和LLM判断提示[…]使用DSPY优化的系统LLM提示工程首先出现在数据科学方面。

Google对Gemini的影响进展或绿色洗涤是否揭示?

Is Google’s Reveal of Gemini’s Impact Progress or Greenwashing?

从表面上看,Google的数字听起来很小,但是您看的越近,故事就越复杂。首先出现在数据科学上。

更好的机器学习模型

Three Essential Hyperparameter Tuning Techniques for Better Machine Learning Models

了解如何优化ML模型以更好地结果,帖子为更好的机器学习模型的三个基本的高参数调谐技术首先出现在数据科学方面。

破解密度代码:为什么MAF在KDE Stalls

Cracking the Density Code: Why MAF Flows Where KDE Stalls

了解为什么自回旋流是高维datathe柱破裂密度代码的高密度估计工具:为什么MAF流向KDE Stalls首先出现在数据科学上的位置。

如何执行全面的大规模LLM验证

How to Perform Comprehensive Large Scale LLM Validation

了解如何验证大型LLM应用程序邮政如何进行全面的大规模LLM验证,首先是朝着数据科学迈进。

如果我在2020年有AI:租用跑道动态定价模型

What If I Had AI in 2020: Rent The Runway Dynamic Pricing Model

曾经想过,如果Covid在Covid开始时存在Chatgpt,那可能会有多大不同?特别是对于必须更新其预测模型的数据科学家?如果我在2020年有AI:租用跑道动态定价模型该怎么办,首先出现在数据科学方面。

飓风袭击最困难的地方:带有Python的县级分析

Where Hurricanes Hit Hardest: A County-Level Analysis with Python

使用Python,Geopandas,Tropycal和Plotly表达表达过去50年中每个县的飓风遭遇的数量。飓风袭击最严重的帖子:县级分析和Python的县级分析首先出现在数据科学方面。

设计值得信赖的ML模型:Alan&Aida发现机器学习中的单调性

Designing Trustworthy ML Models: Alan & Aida Discover Monotonicity in Machine Learning

精确度不能保证可信度。单调性确保预测与常识和业务规则保持一致。设计值得信赖的ML模型:Alan&Aida发现机器学习中的单调性首先出现在数据科学方面。

使用5行代码

How We Reduced LLM Costs by 90% with 5 Lines of Code

当干净的代码隐藏效率低下时:我们从修复几行代码并节省了90%的LLM成本中学到的内容。帖子我们如何将LLM成本降低90%,而5行代码首先出现在数据科学方面。

您需要了解的有关新电源BI存储模式

Everything You Need to Know About the New Power BI Storage Mode

直接左右的50个阴影发布了您需要了解的有关新功率BI存储模式的所有信息,首先是在数据科学方面出现的。