An introduction to preparing your own dataset for LLM training
在这篇博文中,我们介绍了如何为 LLM 训练准备自己的数据集。无论您的目标是针对特定任务微调预训练模型,还是继续针对特定领域的应用程序进行预训练,拥有精心策划的数据集对于实现最佳性能都至关重要。
Accelerating LLM Inference on NVIDIA GPUs with ReDrafter
加速 LLM 推理是一个重要的 ML 研究问题,因为自回归 token 生成计算成本高且相对较慢,而提高推理效率可以减少用户的延迟。除了持续努力加速 Apple 芯片上的推理之外,我们最近在加速 NVIDIA GPU 的 LLM 推理方面取得了重大进展,该 GPU 广泛用于整个行业的生产应用程序。今年早些时候,我们发布并开源了 Recurrent Drafter (ReDrafter),这是一种新颖的推测解码方法,达到了最先进的水平……
Agent Memory in AI: How Persistent Memory Could Redefine LLM Applications
人工智能 (AI) 从根本上改变了我们的生活、工作和交流方式。大型语言模型 (LLM),例如 GPT-4、BERT、Llama 等,在对话式人工智能方面取得了显着进步,提供了快速且类似人类的响应。然而,这些系统受到一个关键缺点的限制,无法在单个会话之外保留上下文。一旦交互 […]The post Agent Memory in AI: How Persistent Memory Could Redefine LLM Applications appeared first on Unite.AI.
The Best Inference APIs for Open LLMs to Enhance Your AI App
想象一下:您已经构建了一个具有绝妙想法的 AI 应用程序,但它很难实现,因为运行大型语言模型 (LLM) 感觉就像试图用卡带播放器举办音乐会。潜力是有的,但性能呢?缺乏。这就是开放式 LLM 推理 API 的用武之地。这些服务是 […] 文章《用于增强您的 AI 应用程序的开放式 LLM 最佳推理 API》首先出现在 Unite.AI 上。
How to Install and Run LLMs Locally on Android Phones
了解如何将 AI 的强大功能带到您的 Android 手机上 — 无需云、无需互联网,只需纯粹的设备智能!
How Easy is It to Fool Your Multimodal LLMs? An Empirical Analysis on Deceptive Prompts
多模态大型语言模型 (MLLM) 的显著进步并未使它们免受挑战,特别是在处理提示中的欺骗性信息的情况下,因此在这种情况下会产生幻觉反应。为了定量评估这种脆弱性,我们提出了 MAD-Bench,这是一个精心策划的基准,包含 1000 个测试样本,分为 5 个类别,例如不存在的对象、对象计数和空间关系。我们对流行的 MLLM 进行了全面分析,从 GPT-4v、Reka、Gemini-Pro 到开源模型……
What is a Multi Model LLM Strategy?: Build an AI Ready Workforce
随着对大型语言模型 (LLM) 在您的业务中的使用的进一步了解,可以发现许多有效的用法。在这个使用仍存在很大争议的阶段,人们仍在寻找有效的方法来建立您的 AI 就绪劳动力。我们将通过此博客考虑一种方法 […] 什么是多模型 LLM 策略?:建立 AI 就绪劳动力 首次出现在 Weam - AI For Digital Agency 上。
今天在 AWS re:Invent 2024 上,我们很高兴地宣布 Amazon SageMaker Inference 中的一项新功能,它显著减少了使用 LMI 部署和扩展 LLM 进行推理所需的时间:Fast Model Loader。在这篇文章中,我们深入探讨了 Fast Model Loader 的技术细节,探索了它与现有 SageMaker 工作流程的集成,讨论了如何开始使用这项强大的新功能,并分享了客户成功案例。
在本文中,我们提供了在 LLM 部署中实施 Fast Model Loader 的详细实践指南。我们探讨了两种方法:使用 SageMaker Python SDK 进行编程实现,以及使用 Amazon SageMaker Studio UI 获得更直观、更具交互性的体验。无论您是喜欢使用代码的开发人员还是喜欢图形界面的人,您都将学习如何利用这一强大功能来加速您的 LLM 部署。
Towards Time-Series Reasoning with LLMs
多模态大型语言模型 (MLLM) 已在视觉等领域的理解和推理方面取得了许多进展,但我们尚未看到时间序列取得如此广泛的成功。尽管之前对时间序列 MLLM 的研究在时间序列预测中表现出色,但很少有研究展示 LLM 如何用于自然语言的时间序列推理。我们提出了一种新颖的多模态时间序列 LLM 方法,该方法可以学习跨各个领域的可推广信息,并具有强大的零样本性能。首先,我们在… 之上训练一个轻量级时间序列编码器
Search enterprise data assets using LLMs backed by knowledge graphs
在本文中,我们将介绍一种生成式 AI 驱动的语义搜索解决方案,使业务用户能够快速准确地在各种企业数据源中找到相关数据资产。在此解决方案中,我们集成了托管在 Amazon Bedrock 上的大型语言模型 (LLM),这些模型由基于 Amazon Neptune 构建的知识图谱派生的知识库提供支持,以创建强大的搜索范例,使基于自然语言的问题能够集成对存储在 Amazon Simple Storage Service (Amazon S3) 中的文档、托管在 AWS Glue 数据目录中的数据湖表以及 Amazon DataZone 中的企业资产的搜索。
Deploy Meta Llama 3.1-8B on AWS Inferentia using Amazon EKS and vLLM
在本文中,我们将介绍使用 Amazon EKS 在 Inferentia 2 实例上部署 Meta Llama 3.1-8B 模型的步骤。此解决方案将 Inferentia 2 芯片的卓越性能和成本效益与 Amazon EKS 的强大和灵活的环境相结合。Inferentia 2 芯片提供高吞吐量和低延迟推理,非常适合 LLM。
Serving LLMs using vLLM and Amazon EC2 instances with AWS AI chips
在过去一年中,大型语言模型 (LLM) 和生成式 AI 的使用呈爆炸式增长。随着强大的公开基础模型的发布,用于训练、微调和托管您自己的 LLM 的工具也变得民主化。在 AWS Trainium 和 Inferentia 上使用 vLLM 可以托管 LLM 以实现高性能 [...]
在本博文中,SophosAI 分享了使用 Amazon Bedrock 和 Amazon SageMaker 使用和评估开箱即用的 LLM 来提高安全运营中心 (SOC) 生产力的见解。我们使用 Amazon Bedrock 上的 Anthropic 的 Claude 3 Sonnet 来说明用例。
Design Patterns in Python for AI and LLM Engineers: A Practical Guide
作为 AI 工程师,编写干净、高效且可维护的代码至关重要,尤其是在构建复杂系统时。设计模式是软件设计中常见问题的可重复使用的解决方案。对于 AI 和大型语言模型 (LLM) 工程师,设计模式有助于构建强大、可扩展且可维护的系统,以高效处理复杂的工作流。本文深入探讨了设计模式 […]文章《面向 AI 和 LLM 工程师的 Python 设计模式:实用指南》首先出现在 Unite.AI 上。
John Snow Labs Medical LLMs are now available in Amazon SageMaker JumpStart
今天,我们很高兴地宣布,John Snow Labs 的医学 LLM – 小型和医学 LLM – 中大型语言模型 (LLM) 现已在 Amazon SageMaker Jumpstart 上推出。对于医生来说,此工具可以快速了解患者的医疗历程,帮助他们从大量文档中及时做出明智的决策。这种总结能力不仅可以提高效率,还可以确保不会忽略任何关键细节,从而支持最佳患者护理并改善医疗保健结果。
How to automate Accounts Payable using LLM-Powered Multi Agent Systems
了解 LLM 驱动的多代理系统如何改变应付账款自动化。了解它们的功能、优势和实际应用,并了解 AI 如何彻底改变财务工作流程。