Understanding Application Performance with Roofline Modeling
计算应用程序性能的普遍挑战是,现实世界的性能和理论性能可能会有所不同。随着产品生态系统的生态系统,随着高性能计算(HPC),游戏或当前景观 - 大语言模型(LLMS)等高性能需求而增长,必须准确地计算出具有屋顶线模型的邮政应用程序性能,这是首先出现在数据科学方面。
Aligning LLMs by Predicting Preferences from User Writing Samples
适应人类的偏好对于创建提供个性化和有效互动的一致性LLM代理至关重要。最近的工作表明,LLM充当写作代理来推断用户偏好的描述。然后,代理对齐来自根据推论的偏好描述的条件。但是,现有方法通常会产生通用的偏好描述,而这些描述无法捕获人类偏好的独特性和个性化的性质。本文介绍了散文,这种方法旨在增强用户推论的偏好描述的精度…
Core Machine Learning Skills, Revisited
有了围绕代理,LLMS及其动力工具的所有嗡嗡声,有时很容易(或至少诱人)认为基本的机器学习工作流程(Feature选择,模型监视等)很快就会变得过时。我们本周为您选择的文章描绘了一幅不同的细微差别图片。当然,从业人员拥有强大的新[…]核心机器学习技能,重新审视的是首先朝着数据科学迈进。
Apple Supercharges Siri with AI Power
它很重要:Apple在iOS 18中用AI功率增压Siri,为更智能,私人语音控制添加了生成的AI和LLM。
Beyond Code Generation: Continuously Evolve Text with LLMs
长期运行的内容演变和结果分析的介绍《超出代码生成:与LLM》不断发展的文本首先出现在数据科学方面。
A Practical Guide to Building Agentic AI for Enterprise Workflow Efficiency
Table of Contents [Show]Executive SummaryWhat is Agentic AI or Agentic WorkflowDifference between traditional and Agentic wayRobotic Process Automation vs Agentic Process AutomationWhy Agentic Workflow MattersKey capabilities and benefitsKey components of Agentic AI systemPractical Usecases of Agent
A Multi-Agent SQL Assistant You Can Trust with Human-in-Loop Checkpoint & LLM Cost Control
您自己的SQL助手构建了Splemlit,Sqlite和Crewaithe Post一个多代理SQL助手,您可以通过人类中的Checkpoint&LLM成本控制来信任您,首先是迈向数据科学的。
Unpacking the bias of large language models
在一项新研究中,研究人员发现了LLMS中一种偏见的根本原因,为更准确和可靠的AI系统铺平了道路。
Build an AI Agent to Explore Your Data Catalog with Natural Language
利用llms查询您的数据链球数据数据对帖子构建AI代理,以探索您的数据目录的自然语言首先出现在数据科学方面。
Policymakers who think AI can help rescue flagging UK economy should take heed | Heather Stewart
健康的怀疑主义是需要的,因为缺陷是大型语言模型仍然容易随意地从事顾问诊断癌症,帮助教师制定课程计划 - 以及通过衍生性斜坡泛滥的社交媒体 - 在Breakneck Speed中正在经济中采用衍生性人工智能。年龄越来越多。尤其是因为没有逃避持续的缺陷:大型语言模型(LLMS)仍然容易随意地制作事物。继续阅读...
Marshall McLuhan Hated TV But He Might Like AI
今天的大型语言模型(LLMS)以前所未有的速度跨学科的流程信息,并挑战了高等教育,以重新考虑教学,学习和学科结构。随着AI工具破坏常规主题的界限,教育工作者面临困境:有些人试图禁止这些工具,而另一些人则在寻求将它们在课堂上拥抱的方法。两种方法都有可能缺少60年前加拿大沟通理论家马歇尔·麦克卢汉(Marshall McLuhan)预测的更深层转变的风险。阅读更多
What If I had AI in 2018: Rent the Runway Fulfillment Center Optimization
在2018年的LLM不会使一个复杂的项目变得琐碎,尽管它可以增强最终解决方案,如果我在2018年有AI:租用跑道履行中心优化的优化率首先是迈向数据科学的。
Training Llama 3.3 Swallow: A Japanese sovereign LLM on Amazon SageMaker HyperPod
Tokyo科学院已经成功训练了Llama 3.3 Swallow,这是一种使用Amazon Sagemaker Hyperpod的700亿参数大语模型(LLM),具有增强的日本能力。该模型在日语任务中表现出了卓越的性能,表现优于GPT-4O-Mini和其他领先的模型。该技术报告详细介绍了项目期间开发的培训基础设施,优化和最佳实践。
Musk’s xAI Secures $6B for AI Race
它很重要的是:马斯克的XAI为AI竞赛的$ 6B获得了$ 6B的挑战,因为它以安全,真理驱动的AGI野心挑战了Openai和人类。