呼吸道合胞病毒 (RSV) 是一种有包膜的负链单链 RNA 病毒,属于单链反式病毒目肺病毒科正肺病毒属 (Rima 等人 2017)。病毒上的两种表面糖蛋白在细胞感染中起重要作用。附着糖蛋白 G 将病毒与宿主细胞结合,三聚体融合 (F) 糖蛋白将病毒包膜与宿主细胞的质膜连接起来,从而使病毒可以进入宿主细胞。F 蛋白还能刺激受感染细胞的质膜融合,形成多核合胞体,这可以在组织培养中观察到。根据 G 蛋白的结构变异,已鉴定出 RSV 的两种主要亚型(A 和 B,有时称为亚组)。每种亚型的优势会随着连续的季节而发生变化;研究发现亚型和疾病严重程度之间的关系不一致(参见 Ciarlitto 等人,2019 年)。
尤其是在肝脏中,有一系列CYP450同工酶参与异生物生物的生物降解,而其他几种CYP450同工酶则参与了HOR-Monnes的生物合成。CYP通常充当单氧酶,并通常通过脂肪族或芳族羟基化反应将一个从O 2的氧原子安装到底物中。2尽管CYP不知道激活木质素链,但有证据表明它们与木质素片段反应,即单体,二聚体或三聚体。是特定的,最近已经确定了两个降解木质素的CYP同工酶,即CYP255A,也称为GCOA和CYP199A4。前者已显示出多种木质素单体的多样性,并通过氧气激活与由O- Dealkylation和芳族羟基化产生的相应产物反应。3因此,CYP255A结合了木质素碎片肠guethol,并执行氧化的O-二乙基化以形成儿茶酚和乙醛产物,4
阻断 SARS-CoV-2 刺突蛋白与其受体 ACE2 相互作用的重新利用的药物可以为新型 COVID-19 治疗或预防提供快速途径。在这里,我们从国际监管机构批准的商业药物库中筛选了 2,701 种化合物,以了解它们抑制重组三聚体 SARS-CoV-2 刺突蛋白与重组人 ACE2 结合的能力。我们确定了 56 种以浓度依赖性方式抑制结合的化合物,测量了结合抑制的 IC 50,并通过计算模拟了最佳抑制剂与 Spike-ACE2 结合界面的对接。最佳候选药物是硫链丝菌素、催产素、尼洛替尼和羟基喜树碱,其 IC50 在 4 – 9 μ M 范围内。这些结果强调了一种有效的筛选方法,可以识别能够破坏 Spike-ACE2 相互作用的化合物,以及识别几种潜在的 Spike-ACE2 相互作用抑制剂。
背景:北欧和中欧约有20%的人口受桦树花粉过敏的影响,主要的桦木花粉BET v 1是过敏反应的主要引起者。及其相关树木和食物的交叉反应过敏原,v 1造成生活质量受损。因此,阐述了新的治疗策略,证明了阻断IgG抗体对BET V 1诱导的IgE介导的反应的有效性。最近的一项研究提供了第一次BET v 1特定纳米生物的BET降低患者与BET v 1的IgE结合的证据。为了增加对BET V 1的识别的潜力并促进交叉反应性和交叉保护,我们开发了BET v 1特异性纳米机构三聚体,并评估了它们抑制多克隆IgE结合到相应的抗原过敏原和过敏蛋白诱导的basophil的能力。
细菌 MCC 的原子结构已通过 X 射线晶体学使用在大肠杆菌中表达的带有 His 标签的重组铜绿假单胞菌 MCC (PaMCC rec) 进行解析。22 。PaMCC rec 亚基寡聚化为十二聚体复合物,其核心由六个 β 亚基组成,中间夹着两个 α 三聚体,形成 α 6 β 6 结构 22 。MCC 是否可能以其他形式存在尚不清楚。尽管如此,它们的超分子组装是根据负染色电子显微镜观察到的无色杆菌 IVS MCC 的杆状聚集体推测的 23 。低温电子显微镜 (cryoEM) 的最新进展揭示了意想不到的酶聚合模式,并阐明了此类结构形式的调控作用 24–29 。例如,高分辨率低温电子显微镜结构阐明了几种真核 ACC 30 丝状形式的调控功能。由于缺乏天然 MCC 酶的高分辨率结构,天然 MCC 是否能类似地形成超分子组装体仍未确定。
摘要:卟啉环模拟了天然的捕光叶绿素阵列,为电子离域提供了见解,为制造具有紧密间隔的卟啉单元的更大纳米环提供了动机。在这里,我们展示了完全由 5,15 连接卟啉组成的大环的首次合成。该卟啉十八聚体是使用共价六臂模板构建的,该模板由钴催化的 H 型二苯并噻嗪环三聚化制成,末端为卟啉三聚体。纳米环周围的卟啉通过分子内氧化中消旋偶联和部分 β-β 融合连接在一起,形成由六个边缘融合的锌 (II) 卟啉二聚体单元和六个未融合的镍 (II) 卟啉组成的纳米环。金表面的 STM 成像证实了辐条 18-卟啉纳米环的尺寸和形状(计算直径:4.7 纳米)。
lissencephaly(光滑的大脑)是由不完全的神经元迁移和光滑的大脑表面特征的大脑发育异常,表现为严重的智力低下。遗传分析已经确定了两种在某些情况下突变的蛋白质,这些蛋白在某些情况下被指定为Lissencephaly-1蛋白(LIS1,也称为血小板激活因子45 kDa)和Doublecortin。lis1显示出与异源三聚体G蛋白的β-抑制的序列同源性,而双核素含有一个consensus abl磷酸化位点。此外,DCAMKL1(DoubleCortin-like和cam激酶样1)蛋白显示了与双铁蛋白的同源性。所有三种蛋白质在发育中的大脑中都高度表达,并且可以共同发挥作用以调节与神经元迁移有关的微管。DCAMKL1蛋白编码一种功能激酶,该功能激酶能够能够呈磷酸化髓磷脂碱性蛋白质及其本身,但其激酶活性似乎并不影响其微管聚合活性。
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 使用其刺突蛋白通过人血管紧张素转换酶 2 (hACE2) 附着到宿主细胞上。可以通过设计一种可以阻断刺突蛋白和 hACE2 之间相互作用的抑制剂来阻止病毒感染。如图 1 所示,一个刺突蛋白三聚体包含三个刺突蛋白,每个刺突蛋白由亚基 S1 和 S2 组成。S1 由 S1A 和 S1B 组成(图 1A),其中 S1B 也称为受体结合域 (RBD),与 hACE2 建立直接相互作用。1 此外,S2 亚基在介导病毒膜与宿主细胞融合方面发挥作用。因此,病毒进入是通过一系列事件完成的,即 S1 与 hACE2 结合,然后触发 S2 将其构象改变为更稳定的融合后状态并允许病毒进入宿主细胞。 2–4 由于 S1 直接与 hACE2 相互作用,许多研究小组一直在积极致力于发现各种生物分子,如抗体 5–10 或适体 11–16,以有效阻断 S1 和 hACE2 之间的相互作用。
等离子纳米结构经常用于创建具有多种光学效应的元整形面积。控制纳米结构的形状和定位是这种等离子跨面功能的关键。在光刻均值旁边,定向自组装是一条可行的途径,可在表面上以必要的精度在表面上创建等离子结构。在这里,提出了DNA折纸自组装和电子束光刻的组合方法,用于确定金纳米球在SIO 2表面上的定位。首先,DNA折纸结构与电子束图案的底物结合,然后通过DNA杂交连接到DNA折纸结构上定义的结合位点上的金纳米颗粒。然后使用溶胶 - 凝胶反应在DNA周围生长二氧化硅层,从而增加了自组装跨表面的稳定性。平均产量为74%的单金纳米球,位于确定位置,空间位置精度为9 nm。金纳米球二聚体和三聚体的速度分别为65%和60%。这种结构方法的适用性是通过制造的元张面积来证明的,其光学响应可以通过传入和散射光的极化来调节。
摘要 将干扰素处理过的细胞的细胞质提取物与双链 RNA 和 ATP 一起孵育,可形成一种低分子量的无细胞蛋白质合成抑制剂,其有效浓度为亚纳摩尔。通过将来自此类细胞的 poly(I)poly(C)-Sepharose 结合酶级分与 [:IH 或 [a- 或 y-32P]ATP 一起孵育,可方便地合成该抑制剂。该放射性抑制剂的特征在于其在尿素存在下在 DEAE-Sephadex 上的行为,以及在酶、碱和高碘酸氧化和 ft 消除的顺序降解中获得的产物。其结构似乎是 pppA2'p5'A2'p5'A。除了 2'-5' 键之外,我们没有发现任何其他修改或异常的证据。有时抑制剂制剂似乎包括相应的二聚体 (pppA2'p5'A)、四聚体 [ppp(A2'p)3A]、五聚体 [ppp(A2'p)4A],以及数量逐渐减少的高级寡聚体。三聚体、四聚体和五聚体的活性相似,但二聚体的活性较低,即使有活性。