烟酰胺腺嘌呤二核苷酸磷酸氧化酶2(NOX2)多亚基复合物是活性氧的高度丰富而中心的来源。nox2是涉及抗菌反应的先天免疫系统的关键酶,但是在许多疾病中,氧化应激和炎症涉及过多的NOX2活性。抑制NOX2作为一种治疗策略具有很大的潜力。抑制NOX2的有趣的药理学方法是靶向P47phox亚基,从而阻止蛋白质 - 蛋白质与P22Phox的相互作用,从而预防NOX2的组装和激活。但是,p47phox的浅结合袋使得开发类似药物的P47phox/p22phox抑制剂。最近,据报道,小分子LMH001抑制p47phox/p22phox相互作用,降低内皮NOX2活性,并保护小鼠免受血管紧张素II诱导的血管氧化应激的影响。这些值得注意的结果可能会对NOX2药理学领域产生重大影响,因为特定和有效的抑制剂很少。在这里,我们合成并测试了LMH001作为阳性对照。我们为提供LMH001提供了可靠的合成途径,但随后我们经历了LMH001在水性缓冲液中化学不稳定。此外,LMH001及其分解产物都不能抑制非细胞荧光极化测定法中的P47phox/ p22phox相互作用。但是,LHM001在功能性细胞测定中是NOX2的弱抑制剂,但与其分解产物之一相同的低效力。这些发现质疑LMH001的活性和建议的机制,并为对研究NOX2生物学的化学探针感兴趣的其他研究人员构成了重要信息。
上下文。密度不均匀性在空间和天体物理等离子体中无处不在,尤其是在不同培养基之间的接触边界处。它们通常对应于在各种空间和时间尺度上表现出强大动态的区域。的确,密度不均匀性是一种可以驱动各种不稳定性的自由能来源,例如低杂交饮用的不稳定性,进而将能量通过波颗粒相互作用转移到颗粒并最终加热等离子体。目标。我们的研究旨在量化低杂交饮用不稳定的效率,以加速或热电子与环境磁场平行。方法。我们结合了两种互补方法:全运动和准线性模型。结果。我们报告了由低杂交饮用不稳定的3D-3V全动作数值模拟的发展驱动的电子加速度的自洽证据。观察到的加速度的效率无法通过标准的准线性理论来解释。因此,我们开发了一种扩展的准线性模型,能够在长时间尺度上定量预测低杂交闪光与电子之间的相互作用,现在与全动光模拟结果一致。最后,我们将此新的,扩展的准线性模型应用于特定的不均匀空间等离子体边界,即汞的磁化。此外,我们讨论了我们对电子加速度的定量预测,以支持未来的Bepicolombo观测值。
摘要背景:HAP1 是一种近单倍体人类白血病癌细胞系,常与 CRISPR-Cas9 基因编辑技术结合用于基因筛选。HAP1 携带费城染色体 (Ph) 和插入 19 号染色体的额外的约 30 Mb 的 15 号染色体片段。体外细胞系作为生物医学研究模型系统的潜在用途取决于其维持基因组稳定性的能力。作为一种具有近单倍体基因组的癌细胞系,HAP1 容易出现遗传不稳定性,而其在培养中自发二倍化的倾向进一步加剧了这一问题。此外,CRISPR-Cas9 基因编辑加上长时间的体外细胞培养可能会诱发意外的“脱靶”细胞遗传学突变。为了深入了解染色体不稳定性 (CIN) 和核型异质性,使用多重荧光原位杂交 (M-FISH) 在单细胞分辨率下对 19 个 HAP1 细胞系进行了细胞遗传学表征,其中 17 个为近单倍体,两个为双单倍体。我们重点研究了新的数值 (N) 和结构 (S) CIN,并讨论了观察到的不稳定性的潜在致病因素。对于每个细胞系,我们检查了其倍性、基因编辑状态和体外细胞培养时间。结果:19 个细胞系中有 16 个已经过基因编辑,传代次数从 10 到 35 不等。17 个近单倍体细胞系的二倍体化范围为 4% 到 35%,[1n] 和 [2n] 中期的 N- 和 S-CIN 百分比范围为 7% 到 50%,两个细胞系没有显示 CIN。两种双单倍体细胞系中患有 CIN 的细胞百分比分别为 96% 和 100%。观察到的最常见的 S-CIN 是缺失,随后是非相互易位和罗伯逊易位。有趣的是,我们观察到近单倍体和双单倍体细胞系中都普遍存在与 13 号染色体相关的 S-CIN,且涉及 13 号染色体的罗伯逊易位发生率很高。此外,基因座特异性 BAC(细菌人工染色体)FISH 使我们首次能够显示额外的 15 号染色体片段插入到 HAP1 基因组 19 号染色体的 p 臂而不是 q 臂中。结论:我们的研究揭示了 CIN 的高发生率,导致大多数 HAP1 细胞系的核型异质性,并且细胞系之间的染色体畸变数量有所不同。值得注意的观察是与 13 号染色体相关的结构染色体畸变频率很高。我们表明,CRISPR-Cas9 基因编辑技术与自发二倍体化和长期体外细胞培养相结合,可能有助于在现有 CIN 的 HAP1 细胞系中诱导进一步的染色体重排。
1。纳帕尔科夫州预算医疗机构化学疗法部,圣彼得堡临床,科学和专业类型的医疗服务(肿瘤学),圣彼得堡,罗斯2.纳帕尔科夫州预算医疗机构腹部外科系,圣彼得堡临床,科学和专业类型的医疗服务(肿瘤学)的实用中心,圣彼得堡,罗斯3.纳帕尔科夫州预算医疗机构,圣彼得堡临床,科学和专业医疗服务的实用中心(肿瘤学),圣彼得堡,罗斯4.纳帕尔科夫州预算医疗机构,圣彼得堡临床,科学和专业类型的医学护理(肿瘤学)实用中心,圣彼得堡,罗斯5.Napalkov国家预算医疗机构,圣彼得堡临床,科学和专业类型医疗服务(肿瘤学)的实用中心,圣彼得堡,RUS 6。Napalkov国家预算医疗机构放射学系,圣彼得堡临床,科学和专业类型的医疗服务(肿瘤学)实用中心,圣彼得堡,RUS 7。纳帕尔科夫州预算医疗机构医疗和放射治疗部,圣彼得堡临床,科学和专业类型的医疗服务(肿瘤学)的实用中心,圣彼得堡,罗斯8.纳帕尔科夫州预算医疗机构,圣彼得堡临床,科学和专业医疗服务的实用中心(肿瘤学),圣彼得堡,RUS
Sebastijan Hop 1,122,Maise Al Bakir 1,122,Crispin T. Hiley 1,2,3,122,Marcin Skrzypski 1,2,3,4,122,Alexander M. Frankell 1,2 Van den Bos 5,Diana Spierings 5,Dahmane Oukrif 9,Marco Novelli 9,Turja Chakrabarti 10,Adam H. Rabinowitz 11,Laila Ait Hassou 12,SaskiaLitière13 Ariana Huebner 1,2,16,CarlosMartínez-Ruiz 2,16,James RM Black 2,16,Wei Wu Micholas 10,Nicholas Angelo,16岁,朱利安(Julian),朱利安(Julian)17岁,朱利安·奇米埃尔克(Juliann Chmielecki)7,Carl Barrett 7,Carl Barrett 7 5,Karen H. Vousten 18,Trever Bivona,19,Trac *,Robert E. Hynds 1,2,Nnennaya Kanu 2,123,Simone Zaccaria 2,20,123
超弹性圆柱壳在加压下表现出的显著变形使其成为可编程充气结构的理想平台。如果施加负压,圆柱壳将弯曲,从而产生一系列丰富的变形模式,由于选择了超弹性材料,所有这些变形模式都可以完全恢复。虽然真空下的初始屈曲事件很容易理解,但这里探索了后屈曲状态,并确定了设计空间中发生耦合扭曲收缩变形模式的区域;通过仔细控制我们的均质壳的几何形状,可以控制收缩与扭曲的比例。此外,可以通过改变我们壳的圆周厚度来解锁作为后屈曲变形模式的弯曲。由于这些软壳可以从屈曲引起的显著变形中完全恢复,因此可以利用这些不稳定性驱动的变形来构建能够通过单个驱动输入进行可编程运动序列的软机器。
抽象类开关重组产生的不同的抗体同种型对鲁棒的适应性免疫系统至关重要,并且缺陷与自身免疫性疾病和淋巴瘤相关。在类开关重组期间需要转录才能募集胞苷脱氨酶AID(这是形成DNA双链断裂的重要步骤),并强烈诱导了免疫球蛋白重链链基因座内的R环形成。但是,R回路对上课开关重组期间双链断裂形成和修复的影响尚不清楚。在这里,我们报告说,缺乏参与R环去除的酶的细胞 - 纳经素和RNase H2 - 证明在免疫球蛋白重链重链链路上增加了R环的形成和基因组不稳定性,而不会影响其转录活性,辅助招募或类转换的重组效率。senataxin和RNase H2缺陷型细胞在开关连接处也表现出增加的插入突变,这是替代末端连接的标志。重要的是,在缺乏鼻蛋白酶或RNase H2b的细胞中未观察到这些表型。我们提出,Senataxin用RNase H2冗余起作用,以介导及时的R环去除,从而促进有效的修复,同时抑制辅助依赖性基因组不稳定性和插入诱变。
抽象背景不匹配修复缺乏(DMMR)和微卫星不稳定性高(MSI-H)出现在癌症的子集中,并已证明对免疫检查点抑制(ICI)具有敏感性;但是,尿路上皮癌(UC)缺乏前瞻性数据。方法和分析我们进行了系统的审查,以估计UC中DMMR和MSI-H的患病率,包括生存和临床结果。我们搜索了2022年10月26日在主要科学数据库中发表的研究。我们筛选了1745项研究,其中包括110。荟萃分析。结果,膀胱癌(BC)和上游UC(UTUC)中DMMR的汇总加权率为2.30%(95%CI 1.12%至4.65%)和8.95%(95%CI 6.81%至11.67%)。BC和UTUC中MSI-H的合并加权流行率分别为2.11%(95%CI 0.82%至5.31%)和8.36%(95%CI 5.50%至12.53%)。比较局部疾病与转移性疾病,BC中MSI-H的合并加权流行率为5.26%(95%CI 0.86%至26.12%)和0.86%(95%CI 0.59%至1.25%);在UTUC中,它们为18.04%(95%CI 13.36%至23.91%)和4.96%(95%CI 2.72%至8.86%)。累积地,用ICI处理的DMMR/MSI-H转移性UC的反应率为22/34(64.7%),而化疗为1/9(11.1%)。结论DMMR和MSI-H在UTUC中比在BC中更频繁地发生。在UC中,MSI-H在局部疾病中比转移性疾病更频繁地发生。在UC中,MSI-H在局部疾病中比转移性疾病更频繁地发生。这些生物标志物可以预测转移性UC中ICI的敏感性以及对基于顺铂的化学疗法的抗性。
上下文。在先前的研究中估计了冠状环中扭结波的能量频道。最近的数值模拟表明,扭结振荡可以在磁性流管中诱导开尔文 - 螺旋不稳定性(KHI)。这种非线性过程打破了通常包含在先前的本本征分析中的假设。因此,需要重新检查当前能量磁通的分析表达式。目标。在当前的工作中,我们的目标是将数值频率与以前的分析公式进行比较,并为冠状环中扭结波的能量频率估算而建立修改。方法。在理想的磁流失动力学(MHD)的框架内工作,我们进行了三维(3D)冠状动脉圆柱振荡的模拟。还采用了前向模型将我们的数值结果转化为使用FOMO代码的可观察结果。结果。我们发现,先前对扭结能量频道的估计是合理的,直到在KHI充分开发之前。然而,随着小涡流的发展,从分析公式中得出的能量频道变得小于根据我们的数值结果计算得出的总po弹孔。此外,当降低原始数值分辨率以匹配逼真的仪器分辨率时,例如,太阳能轨道(SO)上的极端紫外成像仪(EUI)时,能量频率比数值小得多。结论。应通过将其乘以约2倍来修改根据分析公式计算出的能量频道。涉及基于SO / EUI观察的能量频道估计,该因素应大约在3和4之间。< / div>。
当前的临床指南建议将不匹配修复(MMR)蛋白免疫组织化学(IHC)或分子微卫星不稳定性(MSI)测试作为免疫疗法的预测标记。大多数病理指南都将MMR蛋白IHC视为黄金标准测试,以鉴定具有MMR缺乏症的癌症,并仅建议在特殊情况下进行分子MSI测试或筛查林奇综合征。但是,文献中有一些数据表明两种测试类型可能不相等。例如,分子流行病学研究报告了各种癌症类型中有缺乏的MMR(DMMR)和MSI的速率不同。此外,对这两种测试的直接比较表明,MMR IHC和MSI测试之间的差异相对频繁,尤其是在非直肠直肠癌和非内膜癌症中,对于异常的DMMR表型。也有分散的临床数据表明,如果患者选择基于DMMR与癌症的MSI状态,则免疫检查点抑制剂的效率是不同的。所有这些观察结果都提出了当前的教条,即DMMR表型和遗传MSI状态是免疫疗法的相等预测标记。