在过去的几年中,工业 4.0 已发展成为全球广泛认可的概念。许多国家都启动了类似的战略努力,致力于开展大量研究,以推进和整合多种工业 4.0 技术。随着工业 4.0 诞生 10 周年里程碑的临近,欧盟委员会推出了“工业 5.0”的概念(欧盟委员会,2021 年)。工业 5.0 将工人置于生产过程的中心,并利用新技术提供超越就业和增长的繁荣,同时尊重地球的生产极限。它通过将研究和创新服务于向以人为本、可持续和有弹性的行业过渡,补充了工业 4.0 方法。徐等人(2021 年)、冷等人(2022 年)和 Ivanov(2023 年)概述了这一演变,而 Akundi 等人(2024 年)则对这一演变进行了概述。 (2022)分析了工业 5.0 的现状并概述了研究趋势。人工智能 (AI) 在工业 4.0 中的应用提供了解决方案,这些解决方案利用来自智能传感器、设备和机器的数据来生成可操作的情报并帮助提高制造效率(Peres 等人,2020 年;Jan 等人,2023 年)。然而,人工智能使用的这种演变并没有伴随着对以人为本的过程和系统基本方面的类似重视和进展。以人为本的人工智能 (HCAI) 专注于创建通过使用机器智能增强人类智能来设计和开发的系统(Shneiderman,2020a、b)。鉴于工业 5.0 强调人的因素并将其视为生产的中心,因此自然而然地需要 HCAI 来支持向工业 5.0 的迁移,因为人类必须与人工智能系统、机器人等数字解决方案进行协作。这一趋势将研究工作延伸到了“操作员 4.0”及其与人工智能和机器人系统的交互(Bousdekis 等人,2020 年;Romero 等人,2020 年)。
IDCC25 作者和审稿人使用生成式 AI 工具的指南 本指南基于:Lin, Z. (2024)。面向学术出版的 AI 政策框架,认知科学趋势,28(2),85-88。检索自 https://doi.org/10.1016/j.tics.2023.12.002 定义 生成式 AI 是一种人工智能技术,可以生成各种类型的内容,包括文本、图像、音频和合成数据。示例包括但不限于 ChatGPT、NovelAI、Gemini、Jasper AI、Rytr AI、DALL-E 等。出版道德 | 爱思唯尔政策。(nd)。爱思唯尔。 2024 年 5 月 9 日检索自 https://www.elsevier.com/about/policies-and-standards/publishing-ethics 作者指南 如果使用生成式人工智能开发投稿或投稿的任何部分,则必须描述其用途和目的。作者应准备好提供有关其投稿中所用工具和生成内容的提示的信息。作者有责任对人工智能生成的内容进行适当审查,以避免不准确和抄袭。使用生成式人工智能创建内容并不意味着相关工具的作者身份。 为本指南提供指导的出版商政策:出版伦理最佳实践指南 | Wiley。(nd)。2024 年 5 月 9 日检索自 https://authorservices.wiley.com/ethics-guidelines/index.html#22 ChatGPT 和生成式人工智能。(2023 年 1 月 27 日)。 SAGE Publications Inc. https://us.sagepub.com/en-us/nam/chatgpt-and-generative-ai 审稿人指南 审稿人不得将稿件或稿件的任何部分上传到生成式 AI 工具中,即使是为了改善其审稿的语言和可读性。这是基于对稿件中个人数据和/或专有信息的机密性的尊重,以及通过防止它们成为训练数据集的一部分来尊重知识产权。此外,审稿过程是一项人类活动
您应该了解有关卡洛斯的事情:卡洛斯(Carlos)已有13岁。他在加利福尼亚河滨的中学8年级。他身体活跃,喜欢在外面玩游戏,而且任何事情都会很快。卡洛斯最喜欢的食物包括taquitos,披萨,面食和蛋白质奶昔。在假期期间,卡洛斯喜欢与他的母亲和祖母一起为家人做塔玛雷斯。
摘要。对于患有早期痴呆症 (PwD) 的人来说,记住定期进食和饮水并保持健康独立的生活可能具有挑战性。现有的智能家居技术主要侧重于活动识别,但缺乏自适应支持。这项研究通过开发受即时自适应干预 (JITAI) 概念启发的 AI 系统来解决这一差距。它适应个人行为并在家庭环境中提供个性化干预,提醒和鼓励 PwD 管理他们的饮食习惯。考虑到 PwD 的认知障碍,我们根据医疗保健理论和护理人员的见解设计了一个以人为本的人工智能系统。它采用强化学习 (RL) 技术来提供个性化干预。为了避免与 PwD 的过度互动,我们开发了一种基于 RL 的模拟协议。这使我们能够在各种模拟场景中评估不同的 RL 算法,不仅可以找到最有效和最高效的方法,还可以在实施现实世界的人类实验之前验证我们系统的稳健性。模拟实验结果证明了自适应 RL 在构建以人为本的 AI 系统方面具有良好的潜力,该系统可以感知同理心的表达,以改善痴呆症护理。为了进一步评估该系统,我们计划进行现实世界的用户研究。
Philip Roundy Adam Wolcott 创业学教授 创业学教授 论文指导 系考官 Owen Foster Moise Baptiste 系考官 系考官
人工智能(AI)的最新进展强调了需要解释的AI(XAI)来支持人类对AI系统的理解。考虑影响解释功效的人为因素,例如心理工作量和人类理解,对于有效的XAI设计至关重要。XAI中的现有工作已经取决于不同类型的解释引起的理解和工作量之间的权衡。通过抽象来解释复杂的概念(相关问题特征的手工制作的分组)已被证明可以有效地解决和平衡这种工作负载的权衡。在这项工作中,我们通过信息瓶颈方法来表征工作负载 - 理解的平衡:一种信息理论方法,该方法自动生成了最大化信息性和微型复杂性的抽象。尤其是,我们通过人类受试者实验建立了工作量与复杂性之间以及理解和信息性之间的经验联系。人为因素与信息理论概念之间的这种经验联系提供了对工作负载实现权衡的重要数学表征,从而实现了用户泰式XAI设计。
HAI 与斯坦福学习加速器合作,于 2023 年 2 月举办了 AI+教育峰会:AI 服务于教学和学习。峰会展示了斯坦福大学教师和研究人员在 AI 和教育方面的最新研究成果,为与行业合作伙伴、风险投资公司以及政府和民间社会组织建立联系提供了机会。鉴于 ChatGPT 刚刚发布,峰会探讨了 AI 如何以合乎道德、公平和安全的方式改变教学和学习。会议提供了一个平台,以激发结构化的圆桌讨论和团队组建,以获得 HAI/GSE 种子基金,HAI 出资 22.5 万美元资助 10 个由教师领导的项目。其他会议成果包括生成式 AI 和教育研讨会、学生主导的论文阅读小组和学生兴趣小组。
与坦帕湾伙伴关系竞争力报告不同,该报告使用 9 个县的 4 个 MSA 来定义该地区。提供的所有数据均为最新数据;但是,一些来源反映的是 2023 年的数据,而其他来源则涵盖 2024 年的数据
• 实时个性化学习和反馈 • 通过定制规划进行差异化教学计划和评估设计 • 语言间翻译 • 通过人工输入、数据输出和高级人工分析培养批判性思维 • 帮助创造力、模拟和技能发展 • 简化运营和管理职能
可解释人工智能 (XAI) 在使人类理解和信任深度学习系统方面发挥着至关重要的作用。随着模型变得越来越大、越来越普遍,并且在日常生活的各个方面都无处不在,可解释性对于最大限度地减少模型错误的不利影响是必不可少的。不幸的是,以人为中心的 XAI 中的当前方法(例如医疗保健、教育或个性化广告中的预测任务)倾向于依赖于单个事后解释器,而最近的研究发现,当应用于相同的底层黑盒模型实例时,事后解释器之间存在系统性分歧。因此,在本文中,我们呼吁采取行动来解决当前最先进解释器的局限性。我们建议从事后可解释性转向设计可解释的神经网络架构。我们确定了以人为中心的 XAI 的五个需求(实时、准确、可操作、人类可解释和一致),并提出了两种可解释设计神经网络工作流程的方案(使用 InterpretCC 进行自适应路由和使用 I2MD 进行时间诊断)。我们假设以人为中心的 XAI 的未来既不在于解释黑匣子,也不在于恢复传统的可解释模型,而在于本质上可解释的神经网络。