可解释人工智能 (XAI) 在使人类理解和信任深度学习系统方面发挥着至关重要的作用。随着模型变得越来越大、越来越普遍,并且在日常生活的各个方面都无处不在,可解释性对于最大限度地减少模型错误的不利影响是必不可少的。不幸的是,以人为中心的 XAI 中的当前方法(例如医疗保健、教育或个性化广告中的预测任务)倾向于依赖于单个事后解释器,而最近的研究发现,当应用于相同的底层黑盒模型实例时,事后解释器之间存在系统性分歧。因此,在本文中,我们呼吁采取行动来解决当前最先进解释器的局限性。我们建议从事后可解释性转向设计可解释的神经网络架构。我们确定了以人为中心的 XAI 的五个需求(实时、准确、可操作、人类可解释和一致),并提出了两种可解释设计神经网络工作流程的方案(使用 InterpretCC 进行自适应路由和使用 I2MD 进行时间诊断)。我们假设以人为中心的 XAI 的未来既不在于解释黑匣子,也不在于恢复传统的可解释模型,而在于本质上可解释的神经网络。
主要关键词