Loading...
机构名称:
¥ 5.0

摘要:可解释的人工智能 (XAI) 模型使人与机器之间的关系更加透明和易于理解。保险行业为展示 XAI 的潜力提供了一个根本的机会,因为该行业拥有大量有关保单持有人的敏感数据,并且在社会进步和创新中具有核心地位。本文分析了当前人工智能 (AI) 在保险行业实践和保险研究中的应用,以评估其可解释程度。使用代表保险业 (X)AI 应用的搜索词,从 IEEE Xplore、ACM 数字图书馆、Scopus、Web of Science 和 Business Source Complete 和 EconLit 中筛选出 419 篇原创研究文章。对由此产生的 103 篇文章(2000-2021 年之间)进行了分析和分类,这些文章代表了保险文献中 XAI 的最新进展,突出了 XAI 方法在保险价值链各个阶段的普遍性。研究发现,XAI 方法在索赔管理、承保和精算定价实践中尤为普遍。简化方法,称为知识提炼和规则提取,被确定为保险价值链中使用的主要 XAI 技术。这很重要,因为将大型模型组合起来以创建具有不同关联规则的更小、更易于管理的模型有助于构建通常可理解的 XAI 模型。XAI 是 AI 的重要发展,可确保信任、透明度和道德价值观嵌入系统的生态系统中。在保险行业背景下对这些 XAI 焦点的评估证明了对 XAI 独特优势的探索是值得的,它向行业专业人士、监管机构和 XAI 开发人员强调了在进一步开发 XAI 时应特别关注的地方。这是首次分析 XAI 在保险行业中的当前应用的研究,同时有助于跨学科理解应用 XAI。在推进有关充分的 XAI 定义的文献的同时,作者根据保险领域 XAI 文献的系统评价,提出了一种改良的 XAI 定义。

保险中的可解释人工智能 (XAI)

保险中的可解释人工智能 (XAI)PDF文件第1页

保险中的可解释人工智能 (XAI)PDF文件第2页

保险中的可解释人工智能 (XAI)PDF文件第3页

保险中的可解释人工智能 (XAI)PDF文件第4页

保险中的可解释人工智能 (XAI)PDF文件第5页

相关文件推荐