摘要:可解释的人工智能 (XAI) 模型使人与机器之间的关系更加透明和易于理解。保险行业为展示 XAI 的潜力提供了一个根本的机会,因为该行业拥有大量有关保单持有人的敏感数据,并且在社会进步和创新中具有核心地位。本文分析了当前人工智能 (AI) 在保险行业实践和保险研究中的应用,以评估其可解释程度。使用代表保险业 (X)AI 应用的搜索词,从 IEEE Xplore、ACM 数字图书馆、Scopus、Web of Science 和 Business Source Complete 和 EconLit 中筛选出 419 篇原创研究文章。对由此产生的 103 篇文章(2000-2021 年之间)进行了分析和分类,这些文章代表了保险文献中 XAI 的最新进展,突出了 XAI 方法在保险价值链各个阶段的普遍性。研究发现,XAI 方法在索赔管理、承保和精算定价实践中尤为普遍。简化方法,称为知识提炼和规则提取,被确定为保险价值链中使用的主要 XAI 技术。这很重要,因为将大型模型组合起来以创建具有不同关联规则的更小、更易于管理的模型有助于构建通常可理解的 XAI 模型。XAI 是 AI 的重要发展,可确保信任、透明度和道德价值观嵌入系统的生态系统中。在保险行业背景下对这些 XAI 焦点的评估证明了对 XAI 独特优势的探索是值得的,它向行业专业人士、监管机构和 XAI 开发人员强调了在进一步开发 XAI 时应特别关注的地方。这是首次分析 XAI 在保险行业中的当前应用的研究,同时有助于跨学科理解应用 XAI。在推进有关充分的 XAI 定义的文献的同时,作者根据保险领域 XAI 文献的系统评价,提出了一种改良的 XAI 定义。
主要关键词