ISIS Castro Cabrera。 基于二硫化物交换化学的环氧玻璃二聚体材料:应力松弛的实验研究和建模 - 纳米纤维纤维素增强的复合材料的应用。 化学科学。 de toulon大学,2021年。 英语。 nnt:2021Toul0010。 电话-04563706ISIS Castro Cabrera。基于二硫化物交换化学的环氧玻璃二聚体材料:应力松弛的实验研究和建模 - 纳米纤维纤维素增强的复合材料的应用。化学科学。de toulon大学,2021年。英语。nnt:2021Toul0010。电话-04563706
基于半导体过渡金属二分法的晶体管可以提供高载体的迁移率,强旋转 - 轨道耦合以及在量子接地状态下固有强的电子相互作用。这使它们非常适合在低温下用于纳米电子产品。然而,在低温温度下与过渡金属二甲基化金属层建立强大的欧姆接触非常困难。因此,无法达到费米水平靠近带边缘的量子极限,从而探测了分数填充的Landau级级别中的电子相关性。在这里我们表明,使用窗户接触技术可以在从Millikelvins到300 K的温度范围内创建与N型钼二硫化物的欧姆接触。我们观察到超过100,000 cm 2 v -1 s -1的场效应,在低温下的传导带中,超过3,000 cm 2 v -1 s -1的量子迁移率超过3,000 cm 2 v -1 s -1。我们还报告了在最低的双层钼二硫化物中,填充4/5和2/5的分数量子厅状态的证据。
摘要:过渡金属二硫化物 (TMD) 的环境降解是一系列应用中的一个关键绊脚石。我们展示了一种简单的一锅非共价芘涂层工艺,可保护 TMD 免受光诱导氧化和环境老化。芘以非共价方式固定在剥离的 MoS 2 和 WS 2 的基面上。通过电子吸收和荧光发射光谱评估 TMD / 芘的光学特性。高分辨率扫描透射电子显微镜结合电子能量损失光谱证实了广泛的芘表面覆盖,密度泛函理论计算表明 TMD 表面上有约 2-3 层的强结合稳定平行堆叠芘覆盖。在环境条件下以 0.9 mW / 4 µ m 2 照射时,对剥离的 TMD 进行拉曼光谱分析,结果显示由于 Mo 和 W 的氧化状态而产生新的强拉曼谱带。但值得注意的是,在相同的暴露条件下,TMD / 芘保持不受影响。目前的发现表明,在 MoS 2 和 WS 2 上物理吸附的芘可充当环境屏障,防止 TMD 中由水分、空气和激光照射催化的氧化表面反应。拉曼光谱证实,在环境条件下储存两年的混合材料在结构上保持不变,证实了芘不仅可以阻止氧化,还可以抑制老化,具有有益作用。
氧[17-22],电化学氧化[23,24]和光化学氧化技术[25]已成为替代天然方法。 但是,这些方法具有重要的限制:底物必须是具有不愉快气味的硫醇。 这阻止了他们大规模的广泛使用。 最近,研究工作重点是探索替代试剂,这些试剂比硫醇具有无味和更稳定的优势。 这些替代方法包括氯化磺酰氯[26],磺酰基氢氮[27],二硫化碳[28]和硫酸钠(方案1)[29-32]。 在可用的替代方案中,硫酸钠特别有趣,因为它更稳定,更易于运输,并且广泛用于有机合成[33-37]。 使用亚硫酸钠作为建造二硫化物的起始材料时,通常需要将等效的还原剂引入等效的还原剂,例如PPH 3 [29],HI [30],HPO(OET)2 [31]或铁粉[32]或铁粉[32] 尽管已经进行了许多关于硫酸钠二硫化物合成的研究,但在不使用其他氧化还原试剂的情况下,开发了合成硫酸钠二硫化物的方法的发展仍然是一项具有挑战性的任务。氧[17-22],电化学氧化[23,24]和光化学氧化技术[25]已成为替代天然方法。但是,这些方法具有重要的限制:底物必须是具有不愉快气味的硫醇。这阻止了他们大规模的广泛使用。最近,研究工作重点是探索替代试剂,这些试剂比硫醇具有无味和更稳定的优势。这些替代方法包括氯化磺酰氯[26],磺酰基氢氮[27],二硫化碳[28]和硫酸钠(方案1)[29-32]。在可用的替代方案中,硫酸钠特别有趣,因为它更稳定,更易于运输,并且广泛用于有机合成[33-37]。使用亚硫酸钠作为建造二硫化物的起始材料时,通常需要将等效的还原剂引入等效的还原剂,例如PPH 3 [29],HI [30],HPO(OET)2 [31]或铁粉[32]或铁粉[32]尽管已经进行了许多关于硫酸钠二硫化物合成的研究,但在不使用其他氧化还原试剂的情况下,开发了合成硫酸钠二硫化物的方法的发展仍然是一项具有挑战性的任务。
在扭曲的双层系统中观察到的多样化和有趣的现象,例如石墨烯和过渡金属二核苷,引发了有关它们可能托管的新兴效应的新问题。然而,在足够大以进行光谱研究的规模上实现这些结构的实际挑战仍然是一个巨大的障碍,导致直接测量扭曲过渡金属二甲基化元素双层的电子带结构的直接测量很少。在这里,我们提出了一个系统的纳米级角度分辨光发射光谱调查,对散装,单层和扭曲的双层WS 2的光发射调查,小扭曲角为4.4°。实验结果与基于高对称方向的密度函数理论的理论计算进行了比较。出乎意料的是,电子带结构的测量表明,结构弛豫以4.4°扭曲角出现,并形成了大型,不WIST的双层区域。
熔融盐电池,称此称为热电池,在为广泛的防御应用提供按需电力方面起着至关重要的作用。尽管热电池的制造和认证仍然是一项复杂,艰巨的努力,但较长的存储寿命和令人难以置信的热电池的功率密度将它们定位为无数系统中的首选电源。引入了改进的阴极材料,钴二硫化物(COS 2),已扩大了热电池的性能状态,并产生了更多的用例。然而,改进的阴极材料的结构提出了一些制造挑战,这些挑战阻碍了许多高量生产应用的采用。在当前的工作中,概述了一些进步,这些进步允许使用新颖的COS 2 Catholyte材料继续准时交付高量热电池。Enersys Advanced Systems Inc.(EAS)(EAS)通过提供量身定制的粒径分布,连续的颗粒制造技术和半自动装配设备,证明了使用Superior Cos 2电化学解决方案提供高量生产要求的能力和能力。关键字热电池;高体积生产;钴二硫化物;阴极;电化学细胞
钾双离子电池(K-DIBS)由于其高安全性和功率密度引起了极大的兴趣。但是,为K-Dibs实现高率和良好的环状阳极仍然是一个巨大的挑战。在此,层次的TIS 2被认为是K-Dibs的有吸引力的阳极,该阳极的排放能力为91.0 mA H G-1,同时被放电/充电到半细胞中的2000个周期。有趣的是,这种稳定的能力归因于K +诱导的相变的机理。原位特征和第一原理计算表明,插入的K +最终是产生热力学稳定的TI-S层之间的支柱,最终最终是TIS 2相。可靠的K 0.25 Tis 2相显示扩大的层间空间,增强的电子电导率以及较低的扩散屏障,可以使K +的高度稳定和快速存储。此外,首次报道了基于Tis 2阳极和中碳微粒阴极的新型K-DIB。K-DIB在100 mA g-1处实现75.6 mA H G-1的可逆能力,并在5000 mA g-1时保持了85.8%的容量保留/充电,可容纳85.8%的能力保留。这种机械研究为分层硫化物/硒化的反应过程提供了新的见解,并将促进其在安全和高功率K-DIB中的应用。
钼二硫化物(MOS 2)是最相关的2D材料之一,主要是由于其半导体的直接带隙,使其成为电子,光电电子和光子学的有希望的材料。[8-10]同时,碳纳米管是研究精通的1D材料之一,可以提供高构成性和载体迁移率,[11,12],这使它们成为与MOS 2的混合尺寸异质结构相关的。的确,一些努力为MOS 2 /碳纳米管异质结构做出了贡献。例如,具有MOS 2和单壁碳纳米管的异质结构已通过干燥转移制造,并制造了垂直的场效应晶体管,该晶体管与MOS 2 /石墨烯设备相比,栅极调制深度增加了三个数量级。[13]混合二维异质结构设备可以用作活跃显示器中的薄膜晶体管,但是所证明的干燥转移显然不是可扩展性生产的理想方法。为了解决这个问题,开发了通过化学蒸气沉积(CVD)在单壁碳纳米管上直接沉积。过渡金属氧化物和硫用作在单壁碳纳米管膜上沉积MOS 2或WS 2的前体。[14]在这项工作中,混合尺寸的侵蚀设备具有吸引人的电气性能和出色的机械稳定性。但是,研究在研究中忽略了混合二维异质结构的堆叠顺序,这些异质结构可以提供对异质结构和电极之间的联系的特征。在这里,我们首次报告了一种直接合成MOS 2 /双壁碳纳米管(DWCNT)< /div>的方法
在本文中,我们探讨了MOS 2和WS 2 2D单层的能力,可通过产生高阶谐波在Terahertz范围内产生辐射。这种现象是通过基于Monte Carlo方法的粒子集合随机模拟方法研究了电子载体种群对应用电场的非线性响应的结果。对电场振幅,外部温度和激发频率进行了研究,研究了产生的谐波信号的功率。此外,模拟工具的随机性使得可以从扩散状态的固有载流子速度波动带来的背景光谱噪声中辨别出纯粹的离散谐波信号,从而允许设置带宽阈值以进行谐波提取。发现,与低温下的IIII-V半导体相比,两个TMD都显示出相似的阈值带宽,而WS 2将是迄今为止MOS 2的更好选择,用于利用7次和第9次谐波。
摘要:已研究了液相有机化合物碳二硫化物(CS 2)的真空紫外线(VUV)光解析。在每个氮环境和大气空气环境中,在微腔等离子体灯的Si底物上照射了SI底物上的自胸膜灯的172 nm(7.2 eV)VUV光子。在反应期间,在不同气体环境中观察到CS 2在C-C,C-C,C-S或C-O-S基片段中的选择性和快速分离。薄层聚合物微型沉积物。这款来自VUV微质量灯的新型照片过程引入了大面积沉积的低温有机(或合成)转换的另一种途径。可以在光电和纳米技术应用中使用各种有机前体的原位,选择性转换。