摘要 - 按需(AMOD)系统的自主移动性是一种不断发展的运输方式,其中中央协调的自动驾驶汽车的舰队动态地服务了旅行请求。这些系统的控制通常被称为一个大型网络优化问题,而增强学习(RL)最近已成为解决该领域中开放挑战的一种有前途的方法。最近的集中式RL方法专注于从在线数据中学习,而忽略了实际运输系统中的每样本相互作用。为了解决这些限制,我们建议通过离线强化学习的镜头正式对AMOD系统进行正式控制,并使用仅离线数据学习有效的控制策略,这很容易为当前的移动性运营商提供。我们进一步研究了设计决策,并根据现实世界中移动性系统的数据提供了经验证据,表明了离线学习如何恢复(i)(i)(i)与在线方法表现出相同的AMOD控制策略,(ii)允许样品有效的在线微调和(iii)消除复杂的模拟环境的需求。至关重要的是,本文表明,离线RL是在经济临界系统(例如迁移率系统)中应用基于RL的SO的有希望的范式。
自闭症谱系障碍的主要驱动因素之一是数百个基因内的风险等位基因,它们可能在共享但未知的蛋白质复合物中相互作用。在这里,我们开发了一种可扩展的基因组编辑介导的方法来靶向小鼠大脑内的14个高强烈的自闭症风险基因,用于基于接近性的内源性蛋白质组学,从而实现了高特异性空间蛋白质组织的识别。产生的天然接近蛋白质组富含自闭症个体大脑失调的人类基因,并揭示了来自高强调风险基因与低调的蛋白质之间的接近性相互作用,这些蛋白质与较低信号的蛋白质之间可能提供新的途径,从而可以为遗传风险确定优先确定遗传风险。重要的是,数据集丰富了可能构成条件的共享旋转功能和遗传相互作用。我们通过两个自闭症模型中的空间蛋白质组学和基于CRISPR的表达调节来测试这一概念,证明了调节其失调机制的功能相互作用。一起,这些结果揭示了与自闭症相关的体内蛋白质组网络,从而为理解和操纵其病因的细胞驱动器提供了新的侵害。
金属表面的基本物理特性,例如原子弛豫和表面重建,或电子工作函数长期以来一直是使用密度功能理论(DFT)的第一个原则电子结构研究的靶标。在最新的方法中,超级细胞近似中有限厚度的薄金属纤维的平板计算用于模拟半插线的固体表面。在无限厚的平板的极限下,恢复了隔离表面的所需极限。然而,使用计算考虑因素决定的金属表面的薄板模型,平板的两个表面将相互作用,并产生量子大小效应,1从将长距离电子状态置入固定厚度的平板。金属中的弗里德尔振荡可以延长长距离2,这表明计算上棘手的厚板可能需要计算融合到半限定的体积表面。将平板形成能定义为平板的相对能量相对于相同数量的原子的大量参考能(假设平板的两个相对表面相同),将平板E表面(n)的表面能与n个原子层的表面能(N原子层) - 在孔中裂解的能量,可以写成水晶 - 可以像晶体中一样:
DNA的电荷转移和自组装特性使其成为过去二十年来分子电子的标志。基于DNA的纳米电子应用和设备,使用DNA纳米结构具有可编程性能的快速有效的电荷传输机制。在此过程中,将DNA与无机底物集成至关重要。这种整合可能影响DNA的构象,从而改变电荷传输特性。因此,使用分子动力学模拟和第一原理计算与格林的功能方法结合使用,我们探索了AU(111)底物对DNA构象的影响,并分析其对电荷传输的影响。我们的结果表明,DNA序列引导其在AU底物上的分子构象,对工程师电荷传输特性至关重要。我们证明DNA可以在金底物上波动,随着时间的流逝,对各种不同的构象进行了采样。这些独特的构象之间的能量水平,分子轨道和DNA/AU接触原子的空间位置可能有所不同。取决于序列,在HOMO处,电荷传递在前十个构象之间的不同60倍。我们证明了核碱基的相对位置对于确定轨道之间的构象和耦合至关重要。我们预计这些结果可以扩展到其他无机表面,并为理解未来基于DNA的电子设备的DNA无机界面相互作用铺平了道路。
人类一直间接地直接生物黑客,几千年来。我们全都是,唐娜·哈拉威(Donna Harraway)写道:“机器和有机体的理论和制造的杂种嵌合体:简而言之,我们都是机器人”。本课程考虑了整个人类进化,考古记录和今天的人类“自我工程”的证据。在整个课程中,我们将纳入对人类解剖学,生理学,遗传学以及有意识的人类自我修复的历史,道德和社会背景的文化影响的广泛比较观点。课程首先考虑控制论和机器人,以及人类自我理解和自我工程的进化和考古证据。然后,我们考虑了历史观点,例如社会达尔文主义和优生学,以警告对科学和生物学过程的理解如何被误用,以误解为“自我指导的进化”的思想。在此框架内,我们考虑到20世纪的科学变化,其中包括“信息的上升”,以及对机器人反乌托邦的预测与技术优势的预测之间的对比。在课程的下半年,我们考虑了当代人类自我修饰中的当代问题,包括生物医学和化学生物黑客的兴起,遗传修饰和合成生物学,替代器官和身体部位,神经黑客攻击以及“机器人的思想”,人工智能,人工智能,敏捷性和永生性相互作用,以及人类与未来的互动,例如技术,例如技术。
适用于最多数百个原子的有机和无机系统。这是由于它们相对较低的O(n 3)-O(n 4),正式缩放率,在由数千原子组成的系统的近似实现中,甚至可以将其降低到O(n)[5-7]。但是,HF和DFT失败了多引用(强相关)系统,并且无法描述分散相互作用,这是分子间力的关键组成部分,而不是通过临时校正[8]。清楚地,适用于任意分子系统的通用,低缩放和高度精确的电子结构方法仍然难以捉摸。人们普遍认为,对于标准方法不准确或太昂贵的复杂且密切相关的化学系统的模拟是在量子计算中持续和快速进步的领域之一[9]。的确,最后一半的十年已经看到了用于材料模拟的量子质量研究的爆发,包括分子的地面和激发态,量子动力学和线性响应,以及其他许多其他人[10-14]。嘈杂的中级量表量子(NISQ)设备限制了这些算法的适用性,例如H 2,Lih,rbH等[15,16]。尽管如此,量子硬件功能的快速进步以及对新量子算法的深入研究开辟了将来利用计算机辅助药物设计(CADD)中利用Quantum Compution的可能性。新药的合成需要取代药物化学作用。CADD工作流量限制
量子光学研究的共同目标之一是找到控制复杂量子系统的方法,这既可用于研究量子力学的基本问题,也可用于量子技术的潜在应用 [1,2]。量子系统的复杂性随着所涉及部分的数量和各个部分的维数的增加而增加。对于单光子量子系统,25 年来,人们一直知道如何进行任意幺正变换 [3],这已成为集成光子学的基础 [4 – 7]。同样,在光子的其他自由度中,单量子门也已得到很好的理解,例如,使用离散化时间步骤 [8] 或光子的空间模式 [9 – 12] 和对单光子进行高维多自由度操作 [13]。多光子操作更加复杂,因为光子之间不相互作用。为了克服这一困难并实现两个光子之间的有效相互作用,辅助状态用于预示概率变换,例如受控非门 (CNOT) [14-16]。这些变换的质量已大大提高,使得任意二维双光子门的片上演示以及任意光子量子比特变换的理论概念成为可能 [17]。总而言之,多光子量子比特变换和单光子任意高维变换的特殊情况已得到充分理解。然而,d 维中 n 个光子的变换的一般情况仍未得到解决。
上下文。密度不均匀性在空间和天体物理等离子体中无处不在,尤其是在不同培养基之间的接触边界处。它们通常对应于在各种空间和时间尺度上表现出强大动态的区域。的确,密度不均匀性是一种可以驱动各种不稳定性的自由能来源,例如低杂交饮用的不稳定性,进而将能量通过波颗粒相互作用转移到颗粒并最终加热等离子体。目标。我们的研究旨在量化低杂交饮用不稳定的效率,以加速或热电子与环境磁场平行。方法。我们结合了两种互补方法:全运动和准线性模型。结果。我们报告了由低杂交饮用不稳定的3D-3V全动作数值模拟的发展驱动的电子加速度的自洽证据。观察到的加速度的效率无法通过标准的准线性理论来解释。因此,我们开发了一种扩展的准线性模型,能够在长时间尺度上定量预测低杂交闪光与电子之间的相互作用,现在与全动光模拟结果一致。最后,我们将此新的,扩展的准线性模型应用于特定的不均匀空间等离子体边界,即汞的磁化。此外,我们讨论了我们对电子加速度的定量预测,以支持未来的Bepicolombo观测值。
摘要:研究氢气密封技术的完整性丧失 (LOI) 需要多学科视角。然而,材料和工艺安全工程师之间缺乏合作,这反映在解决 LOI 现象的理论中。尽管与氢-金属相互作用相关的潜在降解机制正在得到广泛研究,但与工厂检查计划相关的标准和推荐做法并未明确考虑这些机制。这不可避免地会在规划检查和预测性维护时引入额外的不确定性,并导致有必要在 LOI 发展预测框架内解决和考虑材料降解的一般机制。本文对现有的检查计划标准和推荐做法进行了回顾,以确定目前在降解机制方面如何考虑金属-氢相互作用。重点关注基于风险的方法,包括评估 LOI 导致的潜在事故情景。特别是,研究了金属-氢机制与影响预测 LOI 频率的损伤因素之间的关联,以了解它们对风险和检查类型的影响。适当了解氢气容器的材料降解机制至关重要,因为它不仅有助于正确设计相关设备,还有助于进行适当的检查和维护规划,从而通过有效且明智的基于风险的方法来保证其完整性。根据这项工作,建议对现行标准进行一些修改。
人类一直间接地直接生物黑客,几千年来。我们全都是,唐娜·哈拉威(Donna Harraway)写道:“机器和有机体的理论和制造的杂种嵌合体:简而言之,我们都是机器人”。本课程考虑了整个人类进化,考古记录和今天的人类“自我工程”的证据。在整个课程中,我们将纳入对人类解剖学,生理学,遗传学以及有意识的人类自我修复的历史,道德和社会背景的文化影响的广泛比较观点。课程首先考虑控制论和机器人,以及人类自我理解和自我工程的进化和考古证据。然后,我们考虑了历史观点,例如社会达尔文主义和优生学,以警告对科学和生物学过程的理解如何被误用,以误解为“自我指导的进化”的思想。在此框架内,我们考虑到20世纪的科学变化,其中包括“信息的上升”,以及半机械人反乌托邦的预测与技术优先主义之间的对比。在课程的下半年,我们考虑了当代人类自我修饰中的当代问题,包括生物医学和化学生物黑客的兴起,遗传修饰和合成生物学,替代器官和身体部位,神经黑客攻击以及“机器人的思想”,人工智能,人工智能,敏捷性和永生性相互作用,以及人类与未来的互动,例如技术,例如技术。