量子光学研究的共同目标之一是找到控制复杂量子系统的方法,这既可用于研究量子力学的基本问题,也可用于量子技术的潜在应用 [1,2]。量子系统的复杂性随着所涉及部分的数量和各个部分的维数的增加而增加。对于单光子量子系统,25 年来,人们一直知道如何进行任意幺正变换 [3],这已成为集成光子学的基础 [4 – 7]。同样,在光子的其他自由度中,单量子门也已得到很好的理解,例如,使用离散化时间步骤 [8] 或光子的空间模式 [9 – 12] 和对单光子进行高维多自由度操作 [13]。多光子操作更加复杂,因为光子之间不相互作用。为了克服这一困难并实现两个光子之间的有效相互作用,辅助状态用于预示概率变换,例如受控非门 (CNOT) [14-16]。这些变换的质量已大大提高,使得任意二维双光子门的片上演示以及任意光子量子比特变换的理论概念成为可能 [17]。总而言之,多光子量子比特变换和单光子任意高维变换的特殊情况已得到充分理解。然而,d 维中 n 个光子的变换的一般情况仍未得到解决。
主要关键词