适用于最多数百个原子的有机和无机系统。这是由于它们相对较低的O(n 3)-O(n 4),正式缩放率,在由数千原子组成的系统的近似实现中,甚至可以将其降低到O(n)[5-7]。但是,HF和DFT失败了多引用(强相关)系统,并且无法描述分散相互作用,这是分子间力的关键组成部分,而不是通过临时校正[8]。清楚地,适用于任意分子系统的通用,低缩放和高度精确的电子结构方法仍然难以捉摸。人们普遍认为,对于标准方法不准确或太昂贵的复杂且密切相关的化学系统的模拟是在量子计算中持续和快速进步的领域之一[9]。的确,最后一半的十年已经看到了用于材料模拟的量子质量研究的爆发,包括分子的地面和激发态,量子动力学和线性响应,以及其他许多其他人[10-14]。嘈杂的中级量表量子(NISQ)设备限制了这些算法的适用性,例如H 2,Lih,rbH等[15,16]。尽管如此,量子硬件功能的快速进步以及对新量子算法的深入研究开辟了将来利用计算机辅助药物设计(CADD)中利用Quantum Compution的可能性。新药的合成需要取代药物化学作用。CADD工作流量限制
主要关键词