新发布的机器人编程工具使最终用户可以通过将基于块的语言和直通式编程组合来编程工业机器人。要有效地使用这些系统,最终用户通常需要有限或没有程序经验的经验,就需要培训。要培训用户,辅导系统通常用于基于块的编程(即使是通过编程进行铅编程),但没有教程系统将这两种类型的编程结合在一起。我们提出了Coblox Interactive教程(CITS),这是一种新颖的辅导方法,它教授如何同时使用构成典型的最终用户机器人编程环境的硬件和软件组件。在用户切换两种编程样式之间,CIT为它们提供了宽敞的SCA旧,从而为用户提供了有关失误的立即反馈,并为下一步提供指导。为了评估CIT,我们使用ABB机器人技术发布的编程环境对79个工业最终用户进行了一项研究,将我们的培训方法与培训视频进行了比较,培训视频是行业中最常用的培训。这项研究是迄今为止最大的培训最终用户的研究之一,发现由CIT培训的用户比视频培训的用户更少的时间在更少的时间内撰写了更正确的程序。这表明硬件和软件概念的紧密整合是为培训最终用户编程工业机器人的范围。
摘要。非交互式零知识证明(NIZK)是阈值加密系统中的必不可少的构件,例如多党签名,分布式关键产生和可验证的秘密共享,允许当事方在不揭示秘密的情况下证明正确的行为。此外,普遍合并(UC)Nizks在较大的密码系统中启用无缝组成。构建Nizks的一种流行方式是使用Fiat-Shamir变换来编译交互式协议。不幸的是,菲亚特 - 沙米尔(Fiat-Shamir)转换的nizk需要倒带对手,并且不可直线提取,这与UC相反。使用Fischlin的转换具有直线提取性,但以基本协议的许多重复为代价,导致具体效率差且难以设定参数。在这项工作中,我们提出了一个简单的新变换,该转换将代数关系的Sigma协议编译为UC-NIZK协议,而没有任何重复的开销。
近年来,在音频生成的深度学习模型中已取得了重大进展,提供了有希望的工具用于Musical Creation。在这项工作中,我们研究了在互动舞蹈/音乐表演中使用深度音频生成模型的使用。我们采用了一种表演主导的研究设计方法,建立了研究者/音乐家与舞者之间的艺术研究合作。首先,我们描述了我们的运动互动系统 - 整合深度音频生成模型,并提出了三种用于体现深层空间的探索方法。然后,我们详细介绍建立以系统共同设计为中心的性能的创作过程。最后,我们报告了舞者访谈的反馈,并讨论结果和观点。代码实施在我们的GitHub 1上公开可用。
背景:性障碍性贫血是一种严重的血液学疾病,其标志是全年症和骨髓衰竭。ICU的入院通常反映了需要重症监护的疾病进展或并发症。预测这些患者的短期生存对于个性化治疗和资源优化至关重要。编号图为整合临床参数提供了一种实用的工具,提供了准确的可视化生存预测,以指导ICU中性贫血患者的决策。方法:使用模拟IV数据库,我们确定了被诊断为性贫血的ICU患者。从数千个可用的变量中,我们从五个维度上提取数据:人口统计学,合成指标,实验室事件,合并症和药物使用情况。基于现有的性质贫血研究,进一步完善了400多个变量,并应用了机器学习技术来确定建模的七个最有效的预测指标。使用机器学习方法进行预处理,这些预测因素的可行性通过其他分类和回归模型验证,验证方法是AUROC。此外,使用来自EICU协作研究数据库的数据进行了外部验证,以评估我们的模型的普遍性。使用逻辑回归(LR)构建了互动命名图,以预测患有同性血症患者的7天,14天和28天的死亡率。结果:这项研究中总共包括了1,662名被诊断为性贫血的患者,其中7:3的比例分为训练和测试队列。逻辑回归模型表现出强烈的预测性能,分别为7天,14天和28天死亡率预测的AUC值分别达到0.8227、0.8311和0.8298。使用EICU数据库的外部验证进一步证实了该模型的通用性,AUC值为0.7391、0.7119和0.7093。这些结果突出了该模型在预测性障碍性贫血患者短期生存方面的稳定性和有效性。结论:APS III领导的一组七个预测因子被证明可有效地建模性质贫血患者的短期生存。使用这些预测因素,COX和Logistic回归模型生成了列线图,这些图可以准确预测7天,14天和28天的死亡率。这些工具可以支持临床医生进行个性化的风险评估和决策。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
广泛的治疗曲目已适用于肿瘤学家,包括放射性和化学疗法,小分子和单克隆抗体。但是,药物疗效可以受到使癌细胞逃脱治疗的遗传变化的限制。在这里,我们设计了一个网络工具,可促进癌症中药物敏感性基因组学(GDSC)数据库的数据分析,并在265种认可的化合物上与癌细胞系百科全书中的1001个细胞系(ccle,ccle,cbioportal)中的1001个细胞系有关的大量遗传变化进行了批准。WebTool计算一组遗传改变的耐药性比值比。它提供了分配给细胞信号通路的单个化合物或一组化合物的功效的结果。使用此网络工具,我们复制了已知的遗传驱动因素,并确定了新的候选基因,种系变体,共同享受和药物基因组耐药性和药物重新利用的药物基因组修饰剂。WebTool可用性:https://tools.hornlab.org/gdsc/。
应用程序“ ClimeHop”已设计为在课堂设置中单独使用的学生使用,在该课程中,在学生完成应用程序的不同步骤之后,讲师可以领导讨论。有关讨论会议可能的问题和主题的建议,请参见下面。取决于学生的背景(例如经济学,生态或环境科学),某些问题可能比其他问题更相关。我们还鼓励讲师提出针对当地保护情况(包括保护政策工具)的其他问题。此外,物种保护和气候变化是迅速发展的主题。因此,我们会鼓励讲师在其课堂讨论中包括当前的研究和政策发展。虽然没有关于气候变化和生物多样性损失等不断发展的主题的课堂讨论指南可以解决所有相关问题,但我们希望提供一些可能讨论的可能方面的灵感。我们将可能的讨论问题构成了三个一般主题:“生物多样性保护”,“保护成本和成本效益的重要性”以及“气候变化及其对成本效益的生物多样性保护的影响”。
摘要最多 350 个字:(请输入)交互式推荐旨在适应和学习项目和用户之间的动态交互,以实现推荐系统的响应性和准确性。强化学习天生有利于应对动态/交互环境,因此在交互式推荐研究中引起了越来越多的关注。然而,大多数现有工作倾向于学习固定的用户兴趣,而忽略了它们本质上是动态的。论文首先介绍推荐系统及其应用。然后是详细的文献综述,涵盖三个主要相关领域:序列感知推荐、交互式推荐和知识感知推荐系统。论文还回顾了基于强化学习的推荐系统应用,并讨论了其优点和缺点。之后,本论文报告了关于交互式推荐系统的一般问题陈述和要解决的挑战,包括用户动态兴趣建模、强化学习优化的计算成本以及基于强化学习的推荐系统的性能下降。特别是,我们提出了一套通过强化学习改进交互式推荐的技术和模型。我们提出了一种学习分布式交互嵌入的新模型,该模型可以以紧凑而富有表现力的方式捕获用户的动态兴趣。受到图卷积网络和知识感知推荐的最新进展的启发,我们设计了一个知识引导的深度强化学习 (KGRL) 模型,以利用强化学习和知识图谱的优势进行交互式推荐。该模型在演员-评论家网络框架内实现。它维护一个本地知识网络来指导训练阶段的决策过程,并采用注意力机制来发现项目之间的长期语义。为了降低强化学习的计算成本,我们进一步设计了一种增强优化策略,缩小了更新步骤的空间并改变了奖励函数。我们在模拟在线环境中对提出的三种方法进行了全面的实验,结果表明,与文献中的基线和最先进方法相比,我们的模型的性能得到了持续的改进。最后,本论文讨论了交互式推荐系统的未来工作和潜在的进一步改进。
通过电子邮件或当面交流的一些话对我的帮助比对话者想象的要大。我正在考虑阅读 Colin Klein、Edward Lee、Liesbeth De Mol、Marc Pouzet 和 Nick Wiggershaus 的建议和意见。由于这篇论文的动机主要来自分析哲学家和计算机科学家提出的问题,我非常感谢我在 Jean Nicod 学院的巴黎高等师范学院接受的培训,以及我有机会在罗格斯大学进行为期一年的访问。我特别要感谢 Liz Camp、Carolina Flores、Michael Murez 和 François Recanati。我还要感谢 Benjamin Icard、Pierre Trefouret、Frédéric Fogacci 和 Wendy Carrara 的想法和建议,帮助我思考论文发表后的下一个冒险。
引言 - 在发现[1,2]一个多世纪后,超导性仍然是凝聚态物理学中最深入研究的主题之一,与物质的最基本描述具有深厚的联系[3-6]。这种宏观量子现象的特征在于零电阻,而希格斯则缩合光子大量[3,5,7]以下[3,5,7]低于某些临界温度t c。由具有较小相关效应的良好金属产生的超导体(常规的低t c超导通孔)。在BCS理论中,由于电子之间有效的吸引力,这一现象源于费米表面(FS)的不稳定性。最初,声子的交换介导了该效果。在密切相关的费米子系统(例如繁重的费米子[9,10]和高t c超导性[11-15]中,发现非常规超导性具有淋巴结间隙[11-15],强调了其他玻色子也可能负责配对。在非常规的超导体[16]中,配对机制通常涉及复杂的相互作用,例如自旋波动,电子相关性或轨道效应,导致非平凡的对称性和动量依赖性超导差距。在高t c铜矿中,通过相位敏感的测量结果建立了FS上差距中的节点[17],以确保间隙是具有D x 2-2-y 2波对称性的旋转单元。此外,已经预测并观察到了巡回铁磁体中的p波,可能是p波,旋转三芯对配对[18-22]。最后,已广泛考虑了磁化绝缘体异质结构和各种无间隙的效率系统的镁介导的非常规的超导性[23 - 37]。