1。Afgan E,Baker D,Batut B,Van Den Beek M,Bouvier D,čechM等。 可访问,可重现和协作生物医学分析的银河平台:2018年更新。 核酸res。 2018; 46:W537–44。Afgan E,Baker D,Batut B,Van Den Beek M,Bouvier D,čechM等。可访问,可重现和协作生物医学分析的银河平台:2018年更新。核酸res。2018; 46:W537–44。2018; 46:W537–44。
大规模机器学习的最新进展已产生了能够适应一系列下游任务的高容量的“基础模型”。这种模型对机器人技术抱有很大的希望,但普遍的范式仍然将机器人描绘成单个自主决策者,并执行诸如操纵和导航之类的任务,并且人类参与度有限。然而,包括可穿戴机器人技术(例如,假肢,矫形器,外骨骼),近视和神经界面在内的大量实际机器人系统是半自治的,需要与人类合作伙伴进行持续的互动协调。在该立场论文中,我们认为机器人基础模型必须演变为交互式的多机构观点,以处理实时人类机器人共同适应的复杂性。We propose a generaliz- able, neuroscience-inspired architecture encompassing four modules: (1) a multimodal sensing module informed by sensorimotor integration principles, (2) an ad-hoc teamwork model reminiscent of joint-action frameworks in cognitive science, (3) a predictive world belief model grounded in internal model theories of motor control, and (4) a memory/feedback mechanism that呼应了基于Hebbian和基于增强的可塑性的概念。尽管通过机器人系统的镜头进行了说明,但可穿戴设备和人类生理学的镜头与众不同,但所提出的框架广泛适用于在半自治或交互式环境中运行的机器人。通过超越单一代理设计,我们的立场强调了机器人技术中的基础模型如何实现更强大,个性化和预期的性能水平。
mlnova是按照结构化的,以用户为中心的设计方法开发的,从用户研究开始,以查明Kaggle和Udemy等现有平台中的差距。平台开发中的关键标准包括可访问性,实时反馈和易用性,这导致选择了Django以进行后端稳定性和React.js。该平台使用MongoDB和Firebase进行有效的数据处理,从而确保学习者操纵数据集的交互式模块中的实时更新。使用Scikit-Learn实施了机器学习模型,以实现简单性,而Plotly和D3.js促进了高质量的数据可视化。这种技术组合为用户提供了引人入胜的互动体验。
与大多数作物不同,由于葡萄的杂合性,传统育种对葡萄的益处甚微。令人惊讶的是,我们今天看到的主要栽培葡萄品种与几个世纪前一样;它们缺乏适应不断变化的环境的特性。然而,气候变化和对环境的担忧要求葡萄栽培进行重大变革,需要过渡到基于知识的概念和先进的基因组学工具。我们在此报告了两种葡萄品种的单倍型解析基因组组装的生成以及 VitExpress 的建立,VitExpress 是一个开放的交互式转录组学平台,提供基因组浏览器和集成的网络工具,用于表达分析和基因相关性研究。这些社区资源和工具预计将促进葡萄研究的几个领域的进步。
不同的音乐家和研究人员创建了各种音乐系统,目的是简化基于电生理信号和身体姿势的数字乐器的开发过程 [1,8]。然而,他们的努力往往与主流科学或音乐界隔绝,限制了知识和实践的相互交流。在脑电图领域,使用命令行界面的脑机音乐接口 (BCMI [9]) 软件 [11,12]、复杂的架构 [1,5,14,15] 或程序编程 [12,17] 使得一小部分潜在感兴趣的用户(即具有必要技术技能的用户)可以进行实时脑电图处理。此外,选择和实施脑电图分析需要一定程度的神经科学培训或至少是理解。虽然市场已经做出了反应,推出了越来越用户友好的系统(例如 [10] 最近的一篇评论),但它们通常没有提供足够开放和灵活的软件架构来满足艺术实践的需求。商业软件的价格也可能过高,而且通常专门用于特定的治疗或医疗用途。简而言之,目前缺乏将电生理信号处理纳入灵活音乐环境的标准化系统的需求。肌肉群识别、电极放置和任务设计方面的最佳实践需要传达给非专业用户。我们将要讨论的软件开发是对这种情况的回应,也是名为 Body Brain Digital Musical Instrument (BBDMI) 的大型项目的一部分。该项目的目的是为没有神经科学和信号分析领域专业知识的音乐家和艺术家开发一种数字乐器 [16]。换句话说,BBDMI 的主要目标是通过提供用户友好的界面来处理从采集到特征选择和声音映射的信号处理,从而创建一个灵活而富有创意的平台来试验电生理信号。本文的结构如下。我们首先介绍当前研究的相关工作。接下来,我们将详细描述我们的系统架构、遇到的技术挑战以及与音乐界的潜在相关性。然后,我们将展示我们的修补工作流程、信号处理模块以及在用户研究和音乐会期间开发的映射策略。最后,我们将总结如何改进系统的想法、可能的未来方向以及我们公共存储库的链接。在文中,我们使用术语 ExG 来指代肌电图 (EMG) 和脑电图 (EEG)。
我们提供了第一个机械化的后量子健全安全协议证明。我们通过开发 PQ-BC(一种对于量子攻击者来说是健全的计算一阶逻辑)和以 PQ-Squirrel 证明器形式提供的相应机械化支持来实现这一目标。我们的工作建立在经典 BC 逻辑 [7] 及其在 Squirrel [5] 证明器中的机械化基础上。我们对 PQ-BC 的开发需要使 BC 逻辑对于单个交互式量子攻击者来说是健全的。我们通过修改 Squirrel、依赖 PQ-BC 的健全性结果并强制执行一组句法条件来实现 PQ-Squirrel 证明器;此外,我们为该逻辑提供了新的策略以扩展该工具的范围。使用 PQ-Squirrel,我们进行了几个案例研究,从而给出了它们的计算后量子安全性的第一个机械证明。其中包括两种基于 KEM 的密钥交换通用构造、两种来自 IKEv1 和 IKEv2 的子协议,以及 Signal 的 X3DH 协议的拟议后量子变体。此外,我们使用 PQ-Squirrel 证明几个经典的 Squirrel 案例研究已经是后量子可靠的。
表示学习被广泛用于观察数据的因果量(例如,有条件的平均治疗效应)。尽管现有的表示学习方法具有允许端到端学习的好处,但他们没有Neyman-Ottrol-ottrodenal学习者的理论特性,例如Double Ro-Busberness和Quasi-Oracle效率。此外,这种表示的学习方法通常采用诸如平衡之类的规范约束,甚至可能导致估计不一致。在本文中,我们提出了一类新型的Neyman-Ottrodonal学习者,以在代表水平上定义的因果数量,我们称之为或称为校友。我们的旅行者具有几个实际的优势:它们允许基于任何学习的表示形式对因果量进行一致的估计,同时提供了有利的理论属性,包括双重鲁棒性和准门的效率。在多个实验中,我们表明,在某些规律性条件下,我们的或学习者改善了现有的表示学习方法并实现最先进的绩效。据我们所知,我们的或学习者是第一批提供代表学习方法的统一框架,而Neyman-ottrol-ottrodenal学习者进行因果量估计。
职位名称 用户体验/用户界面 (UX/UI) 设计师 – 合同职位 描述 森林生态系统监测合作社 (FEMC) 是由美国森林服务局资助的地区合作社,总部位于佛蒙特大学,旨在提高对森林生态系统的物理、化学和生物成分的了解。FEMC 实现这一目标的主要手段是通过长期监测计划、广泛的数据档案以及创建使数据更易于访问和解释的产品。FEMC 目前正在开发一个交互式数据门户,以存储来自美国东北部森林的昆虫 eDNA 数据。该门户将供森林管理专业人员和学术研究人员使用。数据将以表格和地图格式显示,显示昆虫 DNA 的发现时间和地点。用户将能够查看与每个识别相关的元数据,包括识别的置信度,并注册接收电子邮件提醒,当数据库中添加了用户定义的感兴趣的物种的新识别时。带有摘要信息的仪表板将显示数据中的亮点,包括稀有或濒危物种的 DNA 检测、释放的生物防治物种、高调入侵物种、受管制的害虫等。FEMC 正在寻找 UX/UI 设计师来制定数据门户网站工具的设计规范。这是一个合同职位,接受提案的截止日期为 2025 年 3 月 7 日美国东部时间下午 5 点。所需输出包括:
设计有效的简洁非相互作用的知识论证(SNARKS)已成为密码学的重要领域。snark是一个加密证明系统,它使计算功能强大的谚语能够证明计算语句对计算弱验证者的有效性。实践中使用的蛇子依赖于对代数问题的计算算术化,并有效,互动地证明该问题具有解决方案。主要方法之一依赖于将错误校正代码作为代数问题,特别是芦苇 - 固体代码的接近测试。由于它们是作为对多项式评估的评估,因此它们提供了与算术相关的有用代数特性。但是,REED - 固体代码不是局部测试的,这意味着测试与代码相邻的距离,可以访问大部分单词。交互式甲骨文(IOPP)[1],[2]的交互式甲骨文证明,通过启用与Reed-Solomon代码的接近度,同时仅读取几个坐标,以实现这一ISUE。iopp是供p的per p和verifier v之间的r旋转相互作用,其中p旨在说服v,对于给定的单词f∈Fn,代码c f n,code c f n和parameterΔ∈[0,1],
*1助理教授of Electronics and Communication Engineering, MMEC Belagavi, Karnataka, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Traffic sign recognition plays a pivotal role in the development of autonomous vehicles and advanced driver- assistance systems (ADAS), significantly enhancing road safety.该项目利用卷积神经网络(CNN)的力量准确地对流量标志进行分类。德国交通标志识别基准(GTSRB)数据集,其中包含在各种条件下捕获的43个交通标志类别的图像,用于模型培训和评估。通过调整大小,归一化和单热编码对图像进行预处理,从而确保与CNN体系结构的兼容性。为了提高模型鲁棒性,采用了旋转,变焦和换档等数据增强技术,从而创建了一个丰富的数据集用于培训。所提出的CNN体系结构包括多个卷积,汇总和辍学层,从而实现有效的特征提取和分类。该模型是使用Adam Optimizer训练的,并在单独的测试集上进行了评估,从而实现了高精度并在现实世界中证明其有效性。结果表明,数据增强显着增强了概括,辍学层的使用减少了过度拟合。该项目以成功部署流量标志识别系统的结论,能够以高精度识别流量标志,从而铺平了将AY集成到实时流量监控和ADA中。这项成就标志着朝着更安全的自主驾驶技术迈出的重要一步。