Eric L. Jorgensen 和 Joseph J. Fuller 编写的交互式电子技术手册 现有的技术手册问题 国防部武器系统后勤支援技术信息 (TI) 系统真正整合的目标,是计算机辅助采购和后勤支援 (CALS) 和公司信息管理 (CIM) 计划所要求的,但由于各部门继续依赖纸质技术手册 (TM) 来获取大部分信息,因此无法实现这一目标。除了造成与生产、储存、控制、修改和使用大量纸张有关的严重长期后勤问题外,目前构建的 TM 本身无法整合到自动化、标准化、交互式、实时系统中,从而以高度易懂的形式传输和共享后勤支援信息。具体来说,纸质技术手册:a.生产和管理成本不必要地高昂。尽管业界广泛采用自动化创作系统,但纸质 TM 无法利用许多最新技术进步(包括数据库管理、信息存储和信息显示)。因此,需要额外的人员和设施来对信息进行物理控制,而这些信息本来可以更有效地处理。b.严重阻碍了给定物流流程(从单一维护行动到全面的船舶或飞机大修)中所需技术信息的许多活动的全面整合,以至于基于纸张的技术信息方法通常会严重降低物流支持行动的有效性。c. 可用性(例如,在查找所需的特定信息时)和可理解性(例如,在复杂的故障隔离过程中)很差,以至于严重减慢了维护过程,增加了错误部件拆卸率,并大大增加了培训时间。新兴解决方案为了减轻这些问题的严重性,国防部正在大力推进 TM 生产和管理流程的自动化。例如,一旦生产出来,TI 就可以进行光栅扫描,以数字形式存储和传输,并在使用时打印在纸上(“按需打印”)。通过将这种面向页面的材料与计算机可读的“导航”指令叠加,可以通过发光屏幕显示更容易地定位所需的特定信息,从而在一定程度上提高可用性。然而,上述类型的现有 TM 自动化尝试,虽然它们可能在物流的特定点提供有限的改进 -
在电价高涨的时候,以较低的电厂效率提供高于基本负荷的电力输出对电厂来说可能是有利可图的。一个例子是高压给水预热器的部分和暂时停用,这需要其控制器与蒸汽发生器或蒸汽涡轮机的控制器之间进行复杂的动态交互。
在电价高涨的时候,以较低的电厂效率提供高于基本负荷的电力输出对电厂来说可能是有利可图的。一个例子是高压给水预热器的部分和暂时停用,这需要其控制器与蒸汽发生器或蒸汽涡轮机的控制器之间进行复杂的动态交互。
该项目致力于通过创新设计并提高公众对城市生物多样性保护的认识来保护北京迅速。使用双钻石设计过程,我进行了调查,以评估公众知识,愿意保护和参与迅速保护。与生态专家合作,Swift Nest Boxes旨在满足其生态需求。该设计包括用于装饰和编辑目的的公共版本,以及具有迅速识别系统的研究版本。交互式投影监视巢活动,使公众参与,同时应用信息并鼓励参与。
航母操作环境。这将给本已高度受限和危险的环境增加极大的复杂性。在人员减少的环境中,随着操作节奏的加快,向共享有人-无人环境迈进,意味着在这些复杂环境中,飞机、地面车辆和机组人员的规划和调度需要更多的自动化。然而,虽然自动规划算法速度快,能够在短时间内处理大量信息,但它们往往很脆弱,无法应对高度动态环境中不断变化的条件。最近的研究表明,通过允许人类操作员和自动规划人员之间的高级交互,可以显著提高整体任务性能。为此,已经开发了一个用户界面,允许管理航空母舰甲板操作的人类决策者直接与集中规划算法交互,以调度飞行中和甲板上的飞机(有人和无人),以及地面车辆和人员。该甲板操作行动路线规划器 (DCAP) 系统利用人类决策者的经验和高级目标导向行为,结合强大的自动规划算法来制定可行、稳健的计划。本文重点介绍了 DCAP 的设计特点,并介绍了旨在量化价值的评估的初步结果
潜在利益冲突 美敦力、波士顿科学和雅培是生产植入研究对象的 DBS 系统的设备制造商,存在潜在利益冲突。佛罗里达大学已获得美敦力、波士顿科学和雅培的资助,但作者对这些资助有经济利益。ARZ 是美敦力和波士顿科学的顾问。IUH 曾为波士顿科学进行研究,并为波士顿科学和美敦力提供咨询。JLO 获得波士顿科学和美敦力的资助,为美敦力和雅培提供咨询,并获得波士顿科学的非财务研究支持。MSS 获得波士顿科学的资助,并获得波士顿科学作为科学顾问的酬金/非财务支持。作为佛罗里达大学运动障碍研究金的主任,CWH 获得了行业资助,用于研究金计划的教育支持,这些资助直接支付给佛罗里达大学,仅用于美敦力、波士顿科学和雅培的研究员工资支持。 MHP 已从美敦力、波士顿科学和雅培获得咨询费。MSL 已从波士顿科学获得咨询费。CRB 已从波士顿科学和雅培获得咨询费,他拥有与 DBS 相关的知识产权。KDF 已从美敦力和波士顿科学获得 DBS 相关工作的不定期咨询费。佛罗里达大学已从美敦力获得 KDF DBS 相关研究的植入式设备,但不包括本次试验。佛罗里达大学从美敦力获得 KDF 功能性神经外科研究金的部分资金。KDF 拥有三项 DBS 相关专利,但他未获得任何版税。KDF 曾作为现场植入外科医生参与雅培和波士顿科学赞助的多中心 DBS 相关研究。MV 已从美敦力获得咨询费。PZ 已作为顾问和美敦力顾问小组成员获得酬金。JJS 已从美敦力和雅培获得研究支持,并从美敦力、雅培和波士顿科学获得咨询费。
航母操作环境。这将给本已高度受限和危险的环境增加极大的复杂性。在人员减少的环境中,随着操作节奏的加快,向共享有人-无人环境迈进,意味着在这些复杂环境中,飞机、地面车辆和机组人员的规划和调度需要更多的自动化。然而,虽然自动规划算法速度快,能够在短时间内处理大量信息,但它们往往很脆弱,无法应对高度动态环境中不断变化的条件。最近的研究表明,通过允许人类操作员和自动规划人员之间的高级交互,可以显著提高整体任务性能。为此,已经开发了一个用户界面,允许管理航空母舰甲板操作的人类决策者直接与集中规划算法交互,以调度飞行中和甲板上的飞机(有人和无人),以及地面车辆和人员。该甲板操作行动路线规划器 (DCAP) 系统利用人类决策者的经验和高级目标导向行为,结合强大的自动规划算法来制定可行、稳健的计划。本文重点介绍了 DCAP 的设计特点,并介绍了旨在量化价值的评估的初步结果
摘要。在天体物理学中,观测起着重要作用。在缺乏监测工具的天文学课上,可以使用诸如用于模拟太空物体的交互式程序 Universe Sandbox 2 之类的交互式程序。这项工作的目的是实施交互式程序,以有效地进行天文学教学、理解材料并提高认知兴趣。在研究“恒星的演化”这一主题时,我们使用 Universe Sandbox 2 观察恒星的演化。通过这个程序,学生有机会了解不同质量的恒星的存在及其差异,观察恒星的物理特性的变化,例如:质量、温度、速度、光度、半径和重力。这将有助于培养分析和比较的能力,形成科学的世界观,培养研究的吸引力,提高学习天文学的兴趣。
在电价高涨的时候,以较低的电厂效率提供高于基本负荷的电力输出对电厂来说可能是有利可图的。一个例子是高压给水预热器的部分和暂时停用,这需要其控制器与蒸汽发生器或蒸汽涡轮机的控制器之间进行复杂的动态交互。