该项目致力于通过创新设计并提高公众对城市生物多样性保护的认识来保护北京迅速。使用双钻石设计过程,我进行了调查,以评估公众知识,愿意保护和参与迅速保护。与生态专家合作,Swift Nest Boxes旨在满足其生态需求。该设计包括用于装饰和编辑目的的公共版本,以及具有迅速识别系统的研究版本。交互式投影监视巢活动,使公众参与,同时应用信息并鼓励参与。
ibkr,也没有任何代表:向客户提供投资建议或建议;就任何安全性,帐户类型,订单,交易或投资顾问或策略的适用性提供任何意见;征集任何订单或交易;监视客户帐户或投资,或客户帐户或服务水平的适当性;提醒客户对客户的投资,帐户或服务的任何建议更改;或提供法律,税收或会计咨询(总体上,“建议”)。IBKR网站上的任何内容均未被认为是购买或出售证券,期货或任何其他投资产品的建议或招标,或购买或出售这些产品的方式,或从事任何投资策略。客户不会寻求,接受或依靠IBKR或其代表的任何建议,或者可以解释的任何通信。讨论替代方案(例如客户可用的不同类型的投资产品)不是投资建议。由于IBKR不提供建议,因此IBKR对任何订单,贸易,投资,投资策略,顾问选择或客户的活动的适用性或适当性不承担任何责任。客户同意,IBKR提交或交易的任何命令都是客户自己的决定,并且基于客户对其个人财务状况,需求和投资目标的评估。3。通知要求和条款的修订。IBKR不认可,也不对第三方提供的任何建议,代表性,内容或其他信息负责,包括但不限于通过任何IBKR网站,应用程序或平台所引用或访问的任何此类信息或第三方,包括但不限于“ IBKR Investors Marketplace”。
虚拟资产是指价值的数字表示形式,该数字表示可能是数字代币(例如实用标记,稳定的股份,安全性或资产支持的代币)或任何其他虚拟商品,加密货币资产或其他本质上相同性质的资产,但不包括由中央银行发出的数字代表。缺乏中央银行的支持以及虚拟资产通常不是法定货币的事实,意味着任何中央银行都无法采取纠正措施来保护虚拟资产在危机中的价值,或发行更多货币。虚拟资产价值通常由供求的市场力量得出,通常比传统货币更波动。对于大多数虚拟资产,交易者将信任放在数字化,分散和部分匿名系统中,该系统依赖于点对点网络和加密技术来维持其完整性。
随着科技与时代的发展,新媒体技术与互动装置艺术的发展也慢慢走入了我们观众的视野。它简直就是“无声的艺术”。公众不再像传统那样“隐退”,而是参与其中,与艺术家一起畅游在艺术的世界里。本文旨在研究人工智能与无线网络通讯在互动装置艺术中的应用。通过各种通讯设备的优化,各种算法的不断进步,加强我们互动装置艺术之间的沟通与联系。本文提出,随着人工智能与无线网络通讯的加入,艺术家与观众之间的互动可能会更加有趣,让我们的生活更加丰富多彩。本文的实验结果表明,在进行无线网络通信时,加入人工智能的智能算法的通信延迟率比不加入人工智能的智能算法低很多,说明它们能够更好的将信息传递到控制端。当受到外界影响时,无线网络通信的误码率会上升,但是加入人工智能算法在他的影响范围内,他的误码率上升明显没有那么高。在无线网络通信过程中,改进后的算法在能耗、通信延迟、误码率等方面肯定要优于未改进的算法。通过信号的增强、通信设备材料的选择,这些都是在不断进步,在这方面也在不断探索。与其他算法相比,ML算法的定位精度提升了70%、65%、30%左右。增加传输信号的节点数量,可以大大减少节点间的跳数,相应减少跳距误差,相应减少距离估算误差,提高定位精度。可以更快解决互动装置艺术的技术壁垒。
此预印本版的版权持有人于2024年12月17日发布。 https://doi.org/10.1101/2024.12.16.628764 doi:biorxiv Preprint
摘要 - Interactive分割旨在根据用户提供的点击从图像中提取感兴趣的对象。在现实世界应用中,通常需要分割一系列具有相同目标对象的图像。但是,现有方法通常一次处理一个图像,未能考虑图像的顺序性质。为了克服这一限制,我们提出了一种称为序列提示变压器(SPT)的新方法,该方法是第一个利用顺序图像信息进行交互式分割的方法。我们的模型包括两个关键组成部分:(1)序列提示变压器(SPT),用于从图像,点击和掩码序列中获取信息以提高准确的信息。(2)TOP-K提示选择(TPS)选择SPT的精确提示,以进一步增强分割效果。此外,我们创建ADE20K-SEQ基准测试,以更好地评估模型性能。我们在多个基准数据集上评估了我们的方法,并表明我们的模型超过了所有数据集的最新方法。索引项 - 计算机视觉,交互式图像分割
摘要 如今,3D 医学图像可视化已成为医学教育的重要工具。基于 Web 的 3D 教学工具已被证明是传统系统的有效替代方案。在这项工作中,我们的目标是使用 3D Web 技术对人脑进行建模和基于 Web 的 3D 交互式可视化,并改进虚拟现实教育环境开发方法(MEDEERV,西班牙语缩写)。20 名本科医学、牙科、老年医学和计算机科学专业的学生进行了大脑模型可用性测试(9 名女性;11 名男性,平均年龄 = 22.1 岁,SD = 0.70)。为此,我们使用了一份带有李克特量表答案的后测问卷,其 Cronbach 的 alpha 值为 0.93。我们在本研究中开发的大脑模型的概念验证提供了该系统可用作基础神经解剖学学习的网络工具的可行性证据。这项工作的主要贡献集中在实现 MEDEERV 来建模 3D 人脑,以及用于重新设计反馈的可用性测试。这种建模、可视化和评估方法可用于人体解剖学教学的其他领域。虽然实验结果显示良好的用户体验、功能和可用性,但有必要生成一个新版本,并对具有大脑解剖学知识的更大、更具体的人群进行研究。
估计相机和激光雷达之间的相对姿势对于促进多代理系统中复杂的任务执行至关重要。尽管如此,当前的方法论遇到了两个主要局限性。首先,在跨模式特征提取中,它们通常采用单独的模态分支来从图像和点云中提取跨模式特征。此方法导致图像和点云的特征空间未对准,从而降低了建立对应关系的鲁棒性。第二,由于图像和点云之间的比例差异,不可避免地会遇到一到一对像素点的对应关系,这会误导姿势优化。为了应对这些挑战,我们通过学习从p ixel到p oint sim Imarlities(i2p ppsim)的基本对齐特征空间来提出一个名为i Mage-p oint云注册的框架。I2P PPSIM的中心是共享特征对齐模块(SFAM)。 它是在粗到精细体系结构下设计的,并使用重量共享网络来构建对齐特征空间。 受益于SFAM,I2P PPSIM可以有效地识别图像和点云之间的共同视图区域,并建立高可责任2D-3D对应关系。 此外,为了减轻一对一的对应问题,我们引入了一个相似性最大化策略,称为点最大。 此策略有效地过滤了异常值,从而确立了准确的2D-3D对应关系。 为了评估框架的功效,我们进行了有关Kitti Odometry和Oxford Robotcar的广泛实验。I2P PPSIM的中心是共享特征对齐模块(SFAM)。它是在粗到精细体系结构下设计的,并使用重量共享网络来构建对齐特征空间。受益于SFAM,I2P PPSIM可以有效地识别图像和点云之间的共同视图区域,并建立高可责任2D-3D对应关系。此外,为了减轻一对一的对应问题,我们引入了一个相似性最大化策略,称为点最大。此策略有效地过滤了异常值,从而确立了准确的2D-3D对应关系。为了评估框架的功效,我们进行了有关Kitti Odometry和Oxford Robotcar的广泛实验。结果证实了我们框架在改善图像到点云注册方面的有效性。为了使我们的结果可重现,源代码已在https://cslinzhang.github.io/i2p上发布。
随着人工智能 (AI) 的发展,交互式人工智能 (IAI) 的概念被引入,它不仅可以交互式地理解和响应人类用户输入,还可以响应动态系统和网络条件。在本文中,我们探讨了 IAI 在网络中的集成和增强。我们首先回顾人工智能的最新发展和未来前景,然后介绍 IAI 的技术和组件。然后,我们探讨了 IAI 与下一代网络的集成,重点关注隐式和显式交互如何增强网络功能、改善用户体验和促进高效的网络管理。随后,我们提出了一个支持 IAI 的网络管理和优化框架,该框架由环境、感知、动作和大脑单元组成。我们还设计了一个可插入的大型语言模型 (LLM) 模块和检索增强生成 (RAG) 模块,以构建大脑单元决策的知识库和上下文记忆。我们通过案例研究证明我们的 IAI 框架可以有效地执行优化问题设计。最后,我们讨论了基于 IAI 的网络的潜在研究方向。
在发生重大事件或危机之后,如何确定并评估发生了什么,以便在详细介绍经验教训的情况下从一系列事件中产生明确证据的报告?社区如何准备自己的措施来处理将来可能会出现的类似复杂,关键的情况?在特定情况下,一些危机响应程序已经建立了良好的,例如,对野火1的初始火灾抑制响应,因此可以提前对响应者进行响应,并且调查人员随后知道要寻找什么。但是,其他时候,危机是如此突然和出乎意料,以至于建立了传达最新信息的沟通斗争。遵循这些不可预见的情况,两组,调查人员和响应者都有共同的需求,以了解有关事件的各种信息,以收集和分析危机后报告。